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Largest datacenters in the world
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• Network requirements of applications
- Desire low latency for short messages 
- Desire high throughput for large messages
- Desire good burstiness tolerance to avoid frequent packet drops
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• Network requirements of applications
- Desire low latency for short messages 
- Desire high throughput for large messages
- Desire good burstiness tolerance to avoid frequent packet drops

• ECN-based Transports
• Achieve low latency & high throughput simultaneously
• Achieve good burstiness tolerance

Meet the requirements
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𝐾
don’t markmark

• Packets get marked when queue length 𝐿 > 𝐾
• Instantaneous queue length is used to allow good burstiness control
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• Packets get marked when queue length 𝐿 > 𝐾
• Instantaneous queue length is used to allow good burstiness control
• 𝐾 should be carefully chosen to achieve both low latency & high 

throughput
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• Packets get marked when queue length 𝐿 > 𝐾
• Instantaneous queue length is used to allow good burstiness control
• 𝐾 should be carefully chosen to achieve both low latency & high 

throughput
• To achieve this, we set 𝐾 as follows:

𝐾 = 𝜆×𝐶×𝑅𝑇𝑇

DCTCP (SIGCOMM ’10), TCN (CoNEXT ’16)
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• Packets get marked when queue length 𝐿 > 𝐾
• Instantaneous queue length is used to allow good burstiness control
• 𝐾 should be carefully chosen to achieve both low latency & high 

throughput
• To achieve this, we set 𝐾 as follows:

𝐾 = 𝜆×𝐶×𝑅𝑇𝑇
Determined by Congestion Control Algorithm

e.g., 𝜆 = 1 with regular ECN-based TCP
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• Packets get marked when queue length 𝐿 > 𝐾
• Instantaneous queue length is used to allow good burstiness control
• 𝐾 should be carefully chosen to achieve both low latency & high 

throughput
• To achieve this, we set 𝐾 as follows:

𝐾 = 𝜆×𝐶×𝑅𝑇𝑇

Fixed link capacity
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• Packets get marked when queue length 𝐿 > 𝐾
• Instantaneous queue length is used to allow good burstiness control
• 𝐾 should be carefully chosen to achieve both low latency & high 

throughput
• To achieve this, we set 𝐾 as follows:

𝐾 = 𝜆×𝐶×𝑅𝑇𝑇
Base 𝑅𝑇𝑇 is stable inside data centers ? NO

DCTCP (SIGCOMM ’10), ECN*(CoNEXT ’12), …
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• Base RTT is composed of:
- Transmission delay
- Propagation delay
- Processing delay
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• Base RTT is composed of:
- Transmission delay
- Propagation delay
- Processing delay

Transmission delay is small due to high link capacity
e.g.,  for a 1.4KB packet, the delay is 1.4𝜇s when link capacity is 10Gbps



RTT Variation inside Data Centers
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• Base RTT is composed of:
- Transmission delay
- Propagation delay
- Processing delay

Propagation delay is small due to short cable length inside DC
e.g. The delay of a 1KM cable is only 3.3 𝜇s.
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• Base RTT is composed of:
- Transmission delay
- Propagation delay
- Processing delay

The processing delay has large variation up to 100 𝜇s or even more caused by
Kernel Scheduling, Middlebox, Hypervisor, …

Ananta(SIGCOMM’13), Duet(SIGCOMM’14), …
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• Testbed Settings
- 3 Servers are connected to a Mellanox 

SN2100 switch
- Links are 100Gbps
- We use DCTCP on each host

Host A Host B Host C

Mellanox SN2100 Switch

100Gbps
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• Case 1: Network Stack
- Host A is installed with Apache Server
- Host B uses ApacheBench to fetch 

webpage from Host A
- We use TCP PROBE on Host B to probe 

the RTT

Host A Host B Host C

Mellanox SN2100 Switch

100Gbps

# Mean STD 90 Percentile 99 Percentile

1 39.3 12.2 59.0 79.0
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• Case 2: Network Stack + SLB
- Host C is installed with Linux Virtual 

Server (LVS) as a Software Load 
Balancer (SLB)

Host A Host B Host C

Mellanox SN2100 Switch

100Gbps

# Mean STD 90 Percentile 99 Percentile

1 39.3 12.2 59.0 79.0

2 63.9 18.3 87.0 121.0
Increased by 30𝜇s
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• Case 3: Network Stack + Hypervisor
- Host A is installed with KVM
- A quad-core virtual machine (VM) 

launches on Host A
- The VM is installed with Apache 

Server
Host A Host B Host C

Mellanox SN2100 Switch

100Gbps

VM
# Mean STD 90 Percentile 99 Percentile

1 39.3 12.2 59.0 79.0

2 63.9 18.3 87.0 121.0

3 69.3 18.8 91.0 130.0
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• Case 4: Network Stack + SLB + 
Hypervisor

Host A Host B Host C

Mellanox SN2100 Switch

100Gbps

VM
# Mean STD 90 Percentile 99 Percentile

1 39.3 12.2 59.0 79.0

2 63.9 18.3 87.0 121.0

3 69.3 18.8 91.0 130.0

4 99.2 23.0 129.0 161.0
Almost 1.5X
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• RTT Variations are mainly caused by varying processing delay
- Spatial: Flows may traverse through different networking components, e.g. 

middlebox, hypervisor, resulting in different RTTs.
- Temporal: Different components may add varying delay at different time due 

to changing workload
- Testbed is with very simple settings

# Mean STD 90 Percentile 99 Percentile

1 39.3 12.2 59.0 79.0

2 63.9 18.3 87.0 121.0

3 69.3 18.8 91.0 130.0

4 99.2 23.0 129.0 161.0
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• RTT Variations are mainly caused by varying processing delay
- Spatial: Flows may traverse through different networking components, e.g. 

middlebox, hypervisor, resulting in different RTTs.
- Temporal: Different components may add varying delay at different time due 

to changing workload
- Testbed is with very simple settings

How to calculate the threshold

𝐾 = 𝜆×𝐶×𝑅𝑇𝑇
Current practice is to use high percentile RTT to derive the threshold

ECN*(CoNEXT ’12), …
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derived based on high percentile RTT
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Observation: Setting threshold based on high/low percentile results in either 
unacceptable throughput loss or long latency when RTT variations exist
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• ECN# is simple yet effective

Inherit current practice

Further introduce persistent queueing detection 
and elimination mechanism

Persistent queueing caused by providing 
overwhelming buffer for flows with small base RTT

Good throughput
Burstiness Tolerance

Poor latency 

Achieve all goals
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• ECN marking based on instantaneous queueing
- Marks if instantaneous queueing 𝐿 > 𝐾
- 𝐾 is derived based on high percentile 𝑅𝑇𝑇
- Two advantages:

- Not hurt throughput
- Good burstiness control
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• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• Compare the minimal queueing over an interval 𝐼 with threshold 𝑇

Buffer Occupancy

Time

𝐾

Flow launches Flow is stable

Unnecessary Queueing that 
only increases latency but 
not throughput 𝑇



ECN# in Details

26ACM CoNEXT, Orlando, Florida, U.S., December 2019

• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• Compare the minimal queueing over an interval 𝐼 with threshold 𝑇

Time

𝐾

Flow launches

Unnecessary Queueing that 
only increases latency but 
not throughput

We do not want to mark ECN because it hurts 
throughput because the queue is to absorb burstiness 
of flow launch

Flow is stable

Buffer Occupancy

𝑇
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• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• Compare the minimal queueing over an interval 𝐼 with threshold 𝑇

Time

𝐾

Flow launches

Unnecessary Queueing that 
only increases latency but 
not throughput

We can mark ECN to bring down the 
unnecessary queueing

Flow is stable

Buffer Occupancy

𝑇
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• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• Compare the minimal queueing over an interval 𝐼 with threshold 𝑇

Time

𝐾
𝑇

Flow launches

Unnecessary Queueing that 
only increases latency but 
not throughput

Flow is stable

RTT
Minimal queueing over one 𝑅𝑇𝑇 < 𝑇Buffer Occupancy
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• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• Compare the minimal queueing over an interval 𝐼 with threshold 𝑇

Time

𝐾

Flow launches

Unnecessary Queueing that 
only increases latency but 
not throughput

Flow is stable

RTT
Minimal queueing over one 𝑅𝑇𝑇 > 𝑇Buffer Occupancy

𝑇
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• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• Compare the minimal queueing over an interval 𝐼 with threshold 𝑇
• We set 𝐼 as high percentile RTT and 𝑇 a relatively small value
• This strategy eliminates unnecessary queueing by marking packets 

conservatively.
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• ECN marking based on instantaneous queueing
• ECN marking based on persistent queueing
• ECN# marks packets when either one is satisfied

The advantage of ECN#

High throughput

Good burstiness control

Low latency Marking based on persistent queueing 
to eliminate unnecessary queuing

Aggressive marking of 
instantaneous marking

The instantaneous marking threshold is 
calculated based on high percentile RTT
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• We implement ECN# on Barefoot Tofino switches
- Emulate high precise system time
- Update switch states at line rate
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• Simulation +  testbed evaluation
• Testbed setup

- 8 servers are connected to a Barefoot Tofino switch
- DCTCP is used at all endhosts.
- NETEM is used to add delay at endhosts to emulate RTT variations

• Scheme compared
- Current practice: RED with threshold calculated based on high percentile RTT
- CoDel
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Consider overall throughput of the network, ECN# can achieve comparable 
performance as current practice of RED and CoDel. 



Realistic Traffic: FCT of Short Flows (< 𝟏𝟎𝟎𝐊𝐁)
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For latency-sensitive short flows, ECN# can achieve much better performance.
CoDel achieves the worst due to frequent packets drops



Simulation: Microscopic View of Queues
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1. Compared to RED, ECN# can effectively eliminate unnecessary queueing
2. Compared to CoDel, ECN# has good burstiness control 

ECN# RED CoDel

ECN# has the following 3 advantages:
1. No throughput degradation

2. Low queueing
3. Good burstiness control

when RTT variation exist
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• Detect the problem of RTT variations

• ECN# : a simple yet effective ECN solution for datacenters with RTT 
variations

- Leverage instantaneous ECN marking to have good burstiness control 
- Use ECN marking based on persistent queueing to eliminate unnecessary 

queueing caused by RTT variations

• Code: https://github.com/snowzjx/ns3-ecn-sharp

https://github.com/snowzjx/ns3-ecn-sharp
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Very happy to see that our simulator helps more and more papers
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