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Abstract—Evaluation is a systematic approach to assessing
how well a system achieves its intended purpose. Federated
learning (FL) is a novel paradigm for privacy-preserving machine
learning that allows multiple parties to collaboratively train
models without sharing sensitive data. However, evaluating FL is
challenging due to its interdisciplinary nature and diverse goals,
such as utility, efficiency, and security. In this survey, we first
review the major evaluation goals adopted in the existing studies
and then explore the evaluation metrics used for each goal. We
also introduce FedEval, an open-source platform that provides a
standardized and comprehensive evaluation framework for FL
algorithms in terms of their utility, efficiency, and security. Fi-
nally, we discuss several challenges and future research directions
for FL evaluation.

Index Terms—Introduction and Survey, Evaluation, Security
and Privacy Protection, Efficiency, Performance measures

I. INTRODUCTION

Federated learning (FL) is an emerging technology that aims
to address data privacy concerns in real-world applications.
Data privacy has become an increasingly severe issue today
as more and more real-life applications are driven by cross-
domain private data. Companies that fail to protect users’
privacy may face a hefty fine. For instance, the Federal Trade
Commission (FTC) fined Facebook $5 billion to force new
privacy measures [1], and Luxembourg’s National Commission
for Data Protection (CNPD) imposed a record-breaking fine
of $887 million on Amazon for misusing customer data for
targeted advertising purposes [2]. In this situation, federated
learning (FL) has received many research and industry in-
terests as a new paradigm of privacy-preserving machine
learning [3]. Rather than collecting massive user data for
model training, FL sets up a joint training scenario in which
the clients’ devices participate in model training under a
joint agreement with a central authority. The client devices
only upload specific model parameters to the cloud server
for aggregation. Recently, FL has appeared on the Gartner
‘Hype Cycle for Data Science and Machine Learning’ at
the innovation trigger stage, indicating the importance and
widespread acceptance of the FL technique [4].

Evaluation plays a critical role in designing various FL
algorithms and systems, owing to the need for rigorous per-
formance assessment, providing comparative analysis between
different algorithms, ensuring robustness across diverse envi-
ronments, and identifying limitations for further improvement.

Conceptually, evaluation is a systematic method to investigate
how well a model, framework, or system meets its intended
purposes. Essentially, two fundamental questions must be
answered during the evaluation process: (1) what are the goals
that need to be achieved?, and (2) how can the ability to
achieve these goals be measured? For example, in the case
of image classification, achieving high accuracy is a primary
goal; to measure accuracy, many research works have evalu-
ated their models on the well-known public dataset, ImageNet,
leading to the creation of the ImageNet leaderboard.1 In this
article, we aim to provide clarity on the two evaluation issues
for FL systems, namely goals and measurements. By doing
so, we hope to assist researchers in conducting FL system
evaluations in a more comprehensive and accessible manner
and contribute to the healthy development of the entire FL
community.

The evaluation of FL is challenging as it is a multi-objective
and cross-domain research topic that leverages techniques
from machine learning, distributed systems, cryptography, etc.
The typical FL process usually contains three steps [3]: 1)
all parties perform local updates using private data; 2) all
parties send the locally updated parameters to a third-party
server, which will perform an aggregation on the received
updates to produce the global updated parameter; 3) all parties
download the global parameter to replace the local one and
continue the next round of training. Generally, studies from
the machine learning domain aim to improve the model utility,
studies from distributed systems aim to improve efficiency,
and privacy-preserving researchers mainly focus on privacy
protections. Existing studies [5, 6] have shown that these
targets are not independent objectives and exhibit substan-
tial interrelation. Enhancing one target usually has negative
impacts on the other targets [5, 6]. For example, increasing
the number of local updates before global synchronization
(i.e., reducing global synchronization frequency) can improve
communication efficiency but harm model accuracy. With
more local updates, a model trained on heterogeneous, non-
identical-and-independent distributed (non-IID) data across
clients will deviate further from the global optimum, which
is known as the non-IID issue [7]. This illustrates the trade-
off between communication efficiency and model utility, and
we will discuss more trade-offs between different targets

1https://paperswithcode.com/sota/image-classification-on-imagenet
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in Section II-D. Appropriate and comprehensive evaluations
can guide our future research directions by fully revealing
the tradeoffs between different objectives, as well as the
theoretical upper and lower bounds on the performance of
different methods under varying conditions (e.g., different data
distributions).

Appropriate evaluation is crucial to not only promote the
healthy development of FL, but the evaluations themselves
can enable further applications.

• Evaluation as Quality Control. Real-world applications
prefer FL models with excellent performance. FL models
with significant issues, such as private data leakage,
are unsuitable for practical applications. Therefore, FL
system evaluation serves as a quality control measure
for FL models before they can be used in real-world
scenarios.

• Evaluation for Incentive Design. FL system evaluation
can also work with incentive mechanisms during feder-
ated training. Specifically, the contribution of each data
provider needs to be quantitatively evaluated, and then the
payoff of the federation can be allocated fairly according
to these evaluations [8, 9].

• Evaluation as Online Verification. Existing FL studies
often make assumptions, particularly for security-related
assumptions such as semi-honest behavior. However,
these assumptions may not always hold in practice. FL
system evaluation can serve as an online verification tool
to ensure that FL participants adhere strictly to the pre-
defined protocol.

In contrast, the inappropriate evaluation will produce bi-
ased assessments, and the undiscovered limitations in FL
algorithms or systems will damage real-world applications.
For example, undiscovered privacy vulnerabilities will not
only leak data providers’ privacy but also decrease people’s
trust and willingness to further contribute data in the fed-
erated systems; FL algorithms untested under different data
distributions may achieve poor model quality in applications
as the data distribution in real-world applications can be
highly heterogeneous [7, 10–16]; FL systems not evaluated on
real-world network conditions may fail to achieve expected
efficiency in applications due to the limited bandwidth and
high latency in real-world applications.

In this survey, we first summarize the evaluation goals for
FL. We then introduce various well-studied metrics and proce-
dures for measuring these evaluation goals. Furthermore, we
will present an open-source platform for FL evaluation called
FedEval.2 This platform can aid researchers in implementing
a standardized and comprehensive FL evaluation procedure
with ease. Finally, we will discuss the challenges and future
directions for FL system evaluations.

Necessity of our evaluation survey The fast development
of FL has motivated many survey studies to summarize
the advances and challenges of FL. Specifically, existing
FL survey studies [3, 17–20] introduced the concepts and
applications of FL, [21] emphasized the non-IID studies, [22–
24] focused on the security and privacy in FL, [25] focused

2https://github.com/Di-Chai/FedEval

on the incentive design, [26–29] emphasized the internet of
things (IoT) scenario, [30–32] summarized the medical and
health case applications of FL, [33] and [34] introduced the
application of smart city and graph learning, respectively.
Existing FL surveys focus on elaborating the new techniques
and applications of FL, and the survey study on the evaluation
of FL has been lacking. However, the evaluation of FL is a
complicated problem since FL is a cross-domain topic that
consists of machine learning, distributed systems, and privacy-
preserving techniques, making the evaluation of FL contains
many targets, e.g., utility, robustness, privacy preservation, etc.
An unreasonable evaluation process will cause an unjustified
assessment of FL methods and may bring severe issues in real-
world applications, e.g., one not well-evaluated FL algorithm
in the health care application can cause medical accidents.
Thus, the survey study on the evaluation of FL to com-
prehensively analyze the evaluation targets and uncover the
challenges in FL evaluation is urgently required to promote
the healthy development of FL.

II. FEDERATED LEARNING EVALUATION GOALS

In this section, we summarize all the goals that need to
be considered in the evaluation of FL (Figure 1). In general,
there are two main types of FL processes: horizontal federated
learning (HFL) and vertical federated learning (VFL). HFL
assumes that parties have the same feature space but different
sample spaces; generally, HFL is applied in edge computing
scenarios, e.g., different edge users collaboratively train the
next-word-prediction model [35]. VFL assumes that parties
have the same sample space but different feature spaces; VFL
is typically a to-business paradigm of FL, which happens
between organizations, e.g., banks need data from online
shopping companies to decide whether to approve one user’s
credit card application. The evaluation goals and measures
presented in this survey do not restrict the type of FL and
work with both HFL and VFL.

A. Goal 1: Utility

FL generally learns a model based on data from multiple
parties without directly collecting data together to meet data
protection requirements in many laws and regulations. Hence,
the primary goal is to obtain a federated model with almost
the same predictive power as the model directly trained from
all parties’ data to ensure the high utility of the FL model. We
discuss utility from two aspects: effectiveness and robustness.

Goal 1.1: Effectiveness. FL aims to train a global model col-
laboratively using data distributed across participants. Ideally,
the FL training should be able to achieve the same prediction
accuracy as centralized training (i.e., collecting all the data
in one place). For the FL system that can approximate a
centralized model’s predictive power, we then call this FL
system with high effectiveness.

Goal 1.2: Robustness. In practice, FL systems cannot always
run in an ideal experimental environment, and various inci-
dents may occasionally happen. Hence, a comprehensive eval-
uation of the FL system should pre-define such scenarios as
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Fig. 1: An overview of FL evaluation goals and measures. Briefly, we categorize the evaluation goals of FL into three types:
security & privacy, utility, and efficiency (Section II). Then, we summarize how to measure these goals in detail (Section III).

much as possible to reflect the system’s robustness in practice.
In particular, many participants indicate a significant disparity
in devices. Data distributions, communication networks (3G,
4G, WiFi), computing resources (CPU, GPU), etc, may vary
among parties. These diversities and uncertainties could cause
issues that significantly affect the FL system [36].

B. Goal 2: Efficiency

Unlike conventional distributed machine learning, which is
carried out on different machines in one data center [37], FL
is performed on cross-data-center machines or edge devices,
which have lower networking or computing resources [36].
Consequently, a deep neural network that could be trained in
minutes using centralized machines may take hours to finish
the training in FL [38]. Thus, efficiency is essential in FL and
needs to be carefully evaluated. Based on existing works, we
categorize the efficiency evaluation into two aspects: commu-
nication efficiency and computation efficiency.

Goal 2.1: Communication Efficiency. In HFL, the edge de-
vices have limited networking resources, e.g., low bandwidth
and high latency, making the communication between the
server and devices expensive [36]. In VFL, the federation usu-
ally consists of machines from different data centers (i.e., from
different companies). The cross-data-center communication is
slow and has high latency [39]. Moreover, each party, in both
HFL and VFL, may join more than one federation, and the
FL training tasks from different federations will compete for
resources [9, 40], making the communication efficiency issue
more severe.

Goal 2.2: Computation Efficiency. In HFL, although the
edge devices tend to have more powerful hardware, they still
cannot match the ability of centralized computing servers,

especially when dealing with large models [41]. Thus, the
low computation efficiency problem cannot be dismissed in
the federated learning scenario. Moreover, different parties
often hold distinct computation resources, which may incur
significant differences in computation speed between parties
[42]. This can further impact the whole FL method’s efficiency
in a complicated manner.

C. Goal 3: Security & Privacy

Security and privacy are the foundation of FL systems.
HFL algorithms, e.g., FedAvg, perform aggregation on model
parameters, and the risk of private data leakage can be reduced
since the users’ data never leaves their devices. However,
recent works have shown that gradients can reveal input data
and labels [43, 44]. Apart from the private data leakage threats
to data holders, there are also model security threats to model
users. Malicious edge parties could use data poisoning or
model poisoning attacks to damage or backdoor the model.
Specifically, FL is often expected to achieve the following two
security and privacy goals:

Goal 3.1: Data Privacy. FL enables different parties to
jointly train machine learning models without exchanging raw
data, and only intermediate results are exchanged. However,
recent works have shown that the intermediate results (e.g.,
gradients) could be used to recover FL parties’ private data
[43, 44] when no privacy-preserving techniques are adopted
(e.g., homomorphic encryption), resulting in the data privacy
issue.

Goal 3.2: Model Security. Federated learning happens over
a bunch of distributed parties (e.g., mobile devices), and there
is no root of trust in existing methods, i.e., every party could
be malicious from the model users’ perspective. Thus, the
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participants could easily attack the model using poisoning
methods, resulting in the model security issue [45, 46].

D. Trade-off between Utility, Efficiency, and Security & Pri-
vacy

It is worth noting that an FL system may not simultaneously
improve all the goals, including utility, efficiency, and security
& privacy. While a new algorithm improves one goal, it
remains essential to comprehensively evaluate performance on
other goals as well since trade-offs exist between different
goals. The comprehensive analysis helps determine whether
an algorithm represents unambiguous progress over state-of-
the-art solutions by improving one aspect without detriment to
others or gains on one goal induce losses on others, reflecting
an ambiguous contribution. To this end, comprehensively
evaluating an FL system from all three aspects becomes
extremely important to deeply understand the advantages and
disadvantages of FL systems (algorithms, models). Next, we
would like to demonstrate more details about the trade-offs
between the goals.
Utility vs. Efficiency. Federated SGD (FedSGD) and Feder-
ated Average (FedAvg) are two mostly well-known FL meth-
ods proposed by Google [35]. FedSGD inherits the settings
of large-batch synchronous SGD (the state-of-the-art machine
learning method used in data centers). In FedSGD, all clients
synchronize the gradients before updating the local model
weights. In contrast, only part of the clients participate in each
round of training in FedAvg and the clients perform multiple
rounds of local training before the synchronization.

FedSGD and FedAvg reveal the trade-off of utility and
efficiency in FL. On the one hand, FedAvg improves com-
munication efficiency (i.e., fewer communication rounds) by
increasing clients’ local training rounds before the global
synchronization. On the other hand, the increased clients’ local
training rounds unexpectedly drift the global model away from
the global optimum under heterogeneous data distributions,
making FedAvg reach worse model utility than FedSGD.

Apart from FedSGD and FedAvg, there are also other
FL studies that encounter the trade-off between utility and
efficiency. For example, some studies utilize gradient com-
pression techniques to improve communication efficiency [12];
however, the model utility may decrease since only partial
model parameters are synchronized.
Efficiency vs. Security & Privacy. While many privacy-
preserving techniques are adopted in FL to enhance privacy
and security protection, there is no free lunch. Privacy protec-
tion generally downgrades the efficiency of the system.

• Homomorphic Encryption (HE): HE is a special encryp-
tion algorithm that enables us to perform computations
directly on encrypted numbers without decryption. HE is
widely applied in FL to protect the intermediate results,
e.g., the gradients [47, 48]. The encrypted numbers (i.e.,
ciphertext) bring the efficiency overhead in two aspects.
First, the ciphertext consumes larger storage space than
plaintext, which brings communication overhead. Second,
the computation on ciphertext is more complicated than
plaintext, which brings computation overhead.

• Secret Sharing (SS) [49]: SS is a secure multi-party
computation framework, in which different participants
secretly share their data among all participants. Each
participant only holds one data partition, which leaks
no private information about the raw data. Basic op-
erations, like addition and multiplication, are defined
under the partitioned data, and then computations like
polynomial functions could be carried out. SS mainly
brings communication overhead, especially when doing
multiplication [50]. More specially, SS is very sensitive
to the networking latency.

• Secure Aggregation (SA): SA is utilized in horizontal
FL to combine the parameter updates from clients in a
manner that protects the privacy of the individual client’s
local updates from a semi-honest server [51]. SA operates
in a way similar to the addition operation in SS but with
the added benefit of enhancing the resilience of the aggre-
gation process when some clients may disconnect. Similar
to SS, SA also introduces communication overhead.

It is worth noting that, the above protection techniques can
often be incorporated into various FL algorithms [35, 52]
to further enhance the protection level. Meanwhile, it would
incur communication and/or computation overhead. Hence,
in practice, the FL system designer should decide whether
these extra protection methods are necessary according to
the application scenario to balance efficiency and privacy
protection.
Utility vs. Security & Privacy. In addition to efficiency, some
privacy-preserving techniques may also degrade the utility of
FL systems.

• Differential Privacy (DP): a well-known privacy-
preserving technique adopted in FL is differential privacy
(DP) [53]. Clients locally add DP noise to the data or
model to protect the private data. DP-based FL solutions
reveal the trade-off between model utility and privacy.
Adding more noise will have better privacy preservation,
however, will significantly downgrade the model’s utility.

• Partial Homomorphic Encryption (PHE): another case
of the trade-off between model utility and security &
privacy in FL is adopting partial homomorphic encryption
(PHE) in vertical federated logistic regression (LR) [54],
in which PHE is utilized to protect the intermediate
results. Since PHE cannot support non-linear functions
(e.g., Sigmoid activation function), Taylor polynomials
are used to approximate the non-linear functions, which
bring nonnegligible loss of model utility.

E. Necessity of comprehensively analyzing all the goals.

Based on our survey, we highly recommend new FL algo-
rithm or systems to perform a comprehensive analysis on all
the goals, including security and privacy, utility, and efficiency,
for two reasons: 1) comprehensive analysis is the foundation
of a fair comparison, and 2) comprehensive analysis is the
key to find all the limitations before applied in real-world
applications. Specifically, the comparison between different
FL studies on partial goals is unfair because different goals
form trade-offs and superiority in partial goals does not mean
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superiority in all goals. For instance, many works do not
analyze privacy protection, which will bring unfair efficiency
comparisons. Because FL algorithms’ efficiency varies greatly
under different privacy-protection methods. For example, dif-
ferential privacy (DP) and homomorphic encryption (HE)
employ different privacy mechanisms and have very different
efficiencies. However, claiming the DP-based method is much
more efficient than the HE-based method as a major innovation
is problematic without understanding their relative privacy
guarantees. The major disadvantage of DP is that it harms
model utility while HE does not. Comprehensive analysis is
also essential to thoroughly assess one algorithm or system and
discover all the limitations, such that the issue (e.g., privacy
or efficiency problems) could be fixed before being applied in
real-world applications.

The major challenge of performing comprehensive analysis
is the workload required for evaluations. To address this,
we propose two solutions: 1) We develop a standardized
evaluation platform, FedEval, to produce comparable and
comprehensive results while reducing evaluation workload,
and the detailed is introduced Section IV; 2) For incremental
methods that only improve one or two goals based on an
existing solution, another option is to analyze that the re-
maining goals have identical performance to prior studies that
already reported comprehensive evaluation results. However,
if the remaining goals were also not previously evaluated,
assessments across all goals remain necessary.

III. FEDERATED LEARNING EVALUATION MEASURES

In this section, we review existing evaluation measures for
different goals, including utility, efficiency, and security &
privacy. For each goal, we introduce the commonly adopted
evaluation measurements and factors considered in the litera-
ture.

A. Utility Evaluation Measures

For utility evaluation, we care about the predictive power
of the obtained machine learning model. Adequate data is
usually an indispensable condition for achieving satisfactory
prediction accuracy, especially when deep learning is applied.
However, such a condition usually cannot be satisfied in
the real world due to privacy-preserving restrictions. Each
data owner can only access their local data, also known as
the isolated data islands problem [3]. FL systems should be
able to break such isolation and achieve performance, FL
Effectiveness, better than Local Effectiveness (i.e., training
model locally without joining any federations). In FL, we
typically learn the global model by solving the following
problem [35]:

min
w

f(w) =

N∑
k=1

pk · Fk(w) = Ek[Fk(w)] (1)

where N is the number of clients, pk ≥ 0 and
∑

k pk = 1.
Fk(w) is defined as the empirical loss over the local data
samples, i.e., Fk(w) =

1
nk

∑nk

i=1 li(w) [55], where nk is the
number of samples at the k-th party, and we set pk = nk/n
where n =

∑
k nk is the total number of samples.

Definition 1 (FE - FL Effectiveness): We define the FL
effectiveness as

∑N
k=1 pk ·Acc(h(w, xk), yk), where w is the

model parameter learned from Equation 1, h(w, xk) outputs a
probability distribution over the classes or categories that can
be assigned to xk ∼ Dk, Acc function computes accuracy of
h(w, xk) regarding the label yk, and we set pk = nk/n.

Definition 2 (LE - Local Effectiveness): Using the same
notation in Definition 1, we define the local effectiveness as∑N

k=1 pk · Acc(h(wk, xk), yk), where wk is the local model
parameter learned by minimizing the local objective: wk =
argminw Fk(w), and we set pk = nk/n.

Definition 3 (CE - Central Effectiveness): We define
the central effectiveness as Acc(h(w, x), y), where w is the
model parameter trained by minw F (w) := Ex∼D[f(w, x)], x
represents data that collected from all the clients, and D is the
global data distribution.3

Effectiveness. We can compare FE and CE/LE to measure
the improvement brought by FL. The definition of central
effectiveness (i.e., Definition 3) follows accuracy definition
from conventional machine learning, i.e., the ratio of correctly
predicted samples in the whole evaluation dataset [56]. While
the definitions of local effectiveness (LE) and FL effectiveness
(FE) are more complicated since the data is distributed across
the clients. Empirically, we can compute the effectiveness of
each client and then aggregate all clients’ results [55, 57–72].
One problem is how to set the aggregation weights, which
intuitively have two approaches: uniform weights or weighted
by the number of samples. Very few studies explain which
approach they use in the evaluation, but we see both types of
implementations when investigating the open-sourced code on
GitHub (e.g., [57]4 used weights by sample and [58]5 used
uniform weights). Theoretically, these two types of weights
are identical if all clients hold the same number of samples.
However, the number of data samples held by each client could
be very heterogeneous in real-world applications, making these
two weights produce incompatible results. In this survey, we
recommend using weights by the number of samples, the
reasons are 1) weights by the number of samples matches
the loss of FL [35], which is also weighted averaged by
the number of training samples; 2) uniform weights could
produce biased evaluation since the clients with very small
amount of data may dominate the final accuracy; If the system
is specifically optimized for clients with small amount of
data, we recommend to report effectiveness for these clients
separately, instead of mixing with other rich-data clients. In
this survey, to produce standardized and compatible measures,
we use weights by the number of samples to define the
effectiveness of FL and local training, which is formulated
in Definition 1 and Definition 2.

• FE vs. CE. FL systems aim to obtain approximately the
same accuracy as centralized machine learning systems,
meaning that FE ≤ CE in general cases. If FE ≈ CE,

3Centralized data collection and training is only an ideal experimental
situation that represents a theoretical accuracy upper bound. In reality, we
usually cannot put all the data in one place due to the restriction of privacy
regulations.

4https://github.com/desternylin/perfed
5https://github.com/yaodongyu/TCT
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then the FL system demonstrates no significant decline
in accuracy compared to centralized learning, which is
often the optimal case for an FL algorithm.

• FE vs. LE. For a practically useful FL system, FE should
be larger than LE, meaning that FL gets performance
improvements compared to learning only on local data. If
FE ≤ LE, the FL system fails to leverage the distributed
knowledge to improve the model performance and should
not be used in the application.

Robustness. In practice, various factors may vary to impact
the performance of FL systems. Hence, these factors need to
be clearly configured to evaluate an FL system’s utility.

• Non-IID Data & Model Personalization. FL aims at
fitting a model to data generated by different participants.
Each participant collects the data in a non-IID manner
across the network. The amount of data held by each
participant may also significantly differ. The non-IID
issue poses challenges to the training of FL. The model
will be more difficult to reach convergence under non-IID
data distribution, which could be further categorized into
two main types [73].

– Non-IID feature setting: The P (y|x) of different
parties are the same while the P (x) are different. For
example, in the FEMNIST dataset, different clients
hold the same label space containing the same set of
symbols, but they have different handwriting styles
on the same symbols.

– Non-IID label setting: The P (x|y) of different par-
ties are the same while the P (y) are different. For
instance, in the MNIST dataset, the non-IID data is
usually simulated by allocating different labels to
different parties [35] such that P (y) are different
while the feature distributions under the same label
are the same.

These two non-IID settings may impact model perfor-
mance differently, so it is desirable to consider both
of them for a robustness experiment on an FL system.
Besides, non-IID data distribution may also lead to the
necessity of model personalization, i.e., each party at-
tempts to learn a personalized model suitable to its local
data distribution for better utility. We can measure the
effectiveness of personalization by comparing a person-
alized model with a non-personalized (global) one.

• Stragglers. FL stragglers are defined as participants that
fall behind the others regarding submitting the computa-
tion results [36]. FL stragglers could be caused by low
computing power or small network bandwidth, which
widely exist in practical FL system deployments. Suppose
an FL system does not consider stragglers in its algorithm
design (e.g., relying on a purely synchronous updating
strategy). In that case, stragglers may bring significant
utility loss to the FL system [74]. If the FL follows a
synchronous updating strategy, the stragglers will bring
large efficiency overhead to the system. In the evaluation,
stragglers could be simulated using the random delay to
a certain part of the participants. Then, evaluate how the
system efficiency is affected by the stragglers.

• Dropout. FL dropouts are defined as participants that fail
to submit the computation results in training (e.g., out of
battery) [36]. Dropouts could be caused by networking
drop-off or system out of service. Dropouts unexpect-
edly change the data distribution during the FL training,
which may cause a convergence issue. A typical way
of evaluating dropouts is by simulating dropout clients
in the system and observing the influence on model
performance.

Existing Works on Utility Evaluation. Table I outlines
representative FL studies and their evaluation measures for
utility. Our analysis reveals that most studies have at least
one experiment focused on utility, such as comparing FL
prediction accuracy with centralized, local, or other baseline
FL methods’ prediction accuracy. This is particularly true for
papers published in database and AI conferences, where utility
is usually the primary evaluation goal. Meanwhile, regarding
the robustness evaluation, most of the AI studies focused
on evaluating the performance under the non-IID data and
overlooked the evaluation of heterogeneous systems, i.e., when
systems contain stragglers and dropouts. Specifically, only two
papers [62, 72] evaluated the heterogeneous system in the
surveyed representative studies. Experiments on straggler and
dropout impact primarily appear in system papers [38, 41],
while non-IID issues are mainly addressed by AI papers. One
major reason is that the impact of non-IID data is usually mod-
eled as a learning problem [60, 71, 74, 103, 104], and various
solutions are proposed by AI studies. However, the system
heterogeneity is an essential challenge in FL since real-world
FL applications usually deal with millions of clients, making
it challenging to coordinate [38, 41], and the heterogeneous
system could decrease both efficiency and utility [38]. Thus the
evaluation of heterogeneous systems is overlooked by existing
studies and should be strengthened in future studies.

B. Efficiency Evaluation Measures

Since efficiency entails both communication and compu-
tation aspects, we provide an overview of their respective
measures one by one.

Communication. Communication efficiency evaluation usu-
ally involves the following two metrics:

• Communication Round (CR): CR measures how many
rounds of communication are needed to jointly train a
machine learning model from scratch to converge. Many
research works draw CR-to-Accuracy curves to compare
communication efficiency [35, 74, 109–111]. In some
cases if the model requires a long time to converge, we
can also fix a certain number of communication rounds
and compare the accuracy [35, 61]. For instance, we may
fix the CR to 500, method A has better communication
rounds efficiency than method B if A shows higher
accuracy than B after 500 rounds of training.

• Communication Amount (CA): CA measures the amount
of data transmitted during the FL training. Less CA could
reduce the burden brought by the limited network band-
width. A frequently used evaluation method is plotting
the CA-to-Accuracy curve, which shows how much data
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Venues Papers Primitive Design Goals and Keywords Effecti-
-veness

Robustness
Non-IID Straggler Dropout

Top
System

Oort [38] Efficiency, Participant Selection • • • •
SFSL [41] Privacy, Large-Scale Edge Computing, Recommender System • • • •

Top
Security

FLTrust [75] Security, Byzantine-robust FL ◦ • ◦ ◦
SecAgg [51] Privacy, Secure Aggregation ◦ ◦ • •
Poseidon [48] Privacy, Apply Fully HE in FL ◦ ◦ ◦ ◦
PrivaCT [76] Privacy, Local Differential Privacy, Clustering • ◦ ◦ ◦
Cerberus [77] Utility, Privacy&Security, Apply FL in Security Events Prediction • • ◦ ◦
EIFFeL [78] Privacy&Security, SecAgg on Verified Updates ◦ ◦ ◦ •
Pasquini et al. [79] Privacy, Attack to SecAgg ◦ ◦ ◦ ◦
DP-GDBT [80] Privacy, Differentially Private GBDT • ◦ ◦ ◦
Shejwalkar et al. [81] Security, Benchmark of Poisoning Attacks • • ◦ ◦
Snarkblock [82] Privacy, Federated Anonymous Blocking ◦ ◦ ◦ ◦
Fang et al. [45] Security, Local Data Poisoning Attacks • • ◦ ◦
Fu et al. [83] Privacy, Label Inference Attack, Vertical FL ◦ ◦ ◦ ◦
FLDP [84] Privacy, Efficiency, Differentially Private SecAgg ◦ ◦ ◦ •
FLAME [85] Security, Defending Backdoor Attacks • • ◦ ◦

Top
Database

Refiner [86] Security, Incentive-Driven FL ◦ ◦ ◦ ◦
Frog [87] Privacy, Utility, Efficiency, Federated Debugging ◦ ◦ ◦ ◦
FedGraph [88] Efficiency, Federated Subgraph Matching • • ◦ ◦
PFA [89] Utility, Efficiency, Heterogeneous Differential Privacy • • ◦ ◦
FML [90] Privacy, Federated Matrix Factorization, Recommender System ◦ ◦ ◦ •
CELU-VFL [91] Efficiency, Vertical FL ◦ ◦ ◦ ◦
SMM [92] Privacy, Utility, Mixing DP with MPC • ◦ ◦ ◦
OpBoost [93] Utility, Privacy, Optimizing DP for VFL ◦ ◦ ◦ ◦
VF2Boost [39] Efficiency, Efficient Vertical Federated GBDT • ◦ ◦ ◦
BlindFL [94] Privacy, Utility, Support Various kinds of Features in VFL • ◦ ◦ ◦
Xiang et al. [95] Privacy, Security, Differentially-private and Byzantine-robust FL • • ◦ ◦
FEAST [96] Utility, Efficiency, Federated Feature Selection • ◦ ◦ ◦
Li et al. [97] Privacy, Differential Private Vertical Federated Clustering • ◦ ◦ ◦
FedDSR [98] Privacy, Utility, Federated Deep Reinforcement Learning • ◦ ◦ ◦
MGFNAS [99] Privacy, Federated Neural Architecture Search • • ◦ ◦
Zhang et al. [100] Privacy, Security, Incentive, Game-Theoretical FL • ◦ ◦ ◦
DSANLS [101] Privacy, Efficiency, Federated Nonnegative Matrix Factorization • ◦ ◦ ◦
VERTICOX [102] Utility, Federated Survival Analysis • ◦ ◦ ◦

Top
AI

q-FFL [55] Utility, Fair Resource Allocation in FL • • ◦ ◦
Per-FedAvg [60] Utility, Personalized FL • • ◦ ◦
pFedMe [103] Utility, Personalized FL • • ◦ ◦
HeteroFL [104] Efficiency, FL for Heterogeneous Clients • • ◦ ◦
FedMix [105] Utility, Mixup for FL, Data Augmentation • • ◦ ◦
PartialFed [106] Utility, Cross-domain Personalized FL • • ◦ ◦
FRL [107] Efficiency, Utility, Constructing Initial Model for FL via Meta Learning • • ◦ ◦
Pillutla et al. [61] Utility, Convergence Analysis • • ◦ ◦
Orchestra [59] Utility, Efficiency, Unsupervised FL • • ◦ ◦
FedPU [62] Utility, FL with Positive and Unlabeled Data • • • ◦
FactorizedFL [63] Utility, Personalized FL, Parameter Factorization • • ◦ ◦
SoteriaFL [64] Privacy, Efficiency, Differentially Private FL, Communication Compression • ◦ ◦ ◦
FedRolex [65] Utility, Model-Heterogeneous FL • • ◦ ◦
FedNTD [108] Utility, Forgetting Issues in FL, Continual Learning • • ◦ ◦
MR-MTL [67] Privacy, Utility, Differentially Private Cross-silo FL • • ◦ ◦
Fed-EF [68] Efficiency, Utility, Compressed FL with Error Feedback • • ◦ ◦
VerFedGNN [69] Utility, Vertical Federated Graph Neural Network • ◦ ◦ ◦
FED-PUB [70] Utility, Personalized Sub-graph FL • • ◦ ◦
FedGMM [71] Utility, Improving Effectiveness of FL on Unseen Data • • ◦ ◦
GuardHFL [66] Privacy, Efficiency, Heterogeneous Client Capabilities, Customized Model • • ◦ ◦
PFL [72] Efficiency, Asynchronized and Parallel FL • • • •

TABLE I: Utility evaluations in recent representative FL papers. To better identify the characteristics of each work, we present
the papers’ system names, primitive design goals, and keywords, which are summarized based on the papers’ abstract and
introduction. We use the authors’ names as substitutes if the paper does provide a system name (e.g., Pasquini et al. [79]).
In the table, the black and white dots indicate whether the research work considers the corresponding measurements in the
evaluation or not, which is investigated from the evaluation sections of the paper.

is transmitted when reaching a certain model accuracy
[12, 109].

Computation. Computation efficiency evaluation typically
employs the following two measures:
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• Theoretical Complexity Analysis: FL carries out a
privacy-preserving distributed model training, which un-
avoidably brings computation overhead. For example,
FedAvg brings computation overhead regarding server ag-
gregation. Apart from the computation overhead brought
by the distributed training, the widely adopted privacy-
preserving techniques in FL, e.g., homomorphic encryp-
tion, also bring large computation overhead and need
careful analysis [48, 112]. One fundamental method to
evaluate computational efficiency is doing computation
complexity analysis. Method A is better than B if A has
a lower order of computation complexity.

• Time Consumption: Apart from the complexity analysis,
experimental time consumption results are also frequently
used to evaluate the efficiency of FL methods. Generally,
we can draw a time-to-accuracy curve to compare the
time consumption of different methods when reaching
the same model performance [38, 106]. It is worth noting
that computation time is influenced by the software and
hardware environments. Some studies also report the time
consumption by considering both communication and
computation, i.e., the total time consumption of an FL
system [113]. Thus, when reviewing an FL paper’s time
consumption results, it is crucial to comprehend how time
consumption is calculated.

FL applications can involve numerous participants, such
as Google’s federated mobile keyboard prediction with mil-
lions of participants [35]. Hence, To evaluate the practical
efficiency of an FL system, conducting large-scale participant
experiments may be necessary. An ideal solution would be to
conduct experiments directly on a large number of devices,
where each device represents a participant. However, only
a few research institutions have the capacity to maintain
and conduct evaluations on a large number of devices. A
practical alternative is simulating all participants using a few
computing servers. Specifically, virtual machine techniques,
such as Docker containers [114], are commonly used to
simulate multiple FL participants on a single server. It is also
important to note that some efficiency measurements (e.g.,
time consumption) can be affected by the hardware and soft-
ware used in developing and deploying the system. Therefore,
when conducting a comprehensive efficiency evaluation of FL
systems, it is important to configure experiment parameters
(e.g., network bandwidth) during simulation.

Existing Works on Efficiency Evaluation. Table II lists the
efficiency evaluation considerations in representative studies.
Most of the studies report efficiency evaluation regarding
communication or computation since efficiency is an essential
metric that highly affects the practicality of FL methods.
It is worth noting that about 75% of the surveyed rep-
resentative FL studies do not evaluate efficiency regarding
both communication and computation, which could lead to
biased conclusions regarding the efficiency of FL systems.
For example, communication rounds are commonly used as
an efficiency metric in literature, but they may not always
reflect the overall efficiency of the FL method. In partic-
ular, increasing local training rounds for every update in

Venues Papers Scale
(# Party)

Comm Comp
Round Amount O(∗) Time

Top
System

Oort [38] Millions • ◦ ◦ •
SFSL [41] Billions • • • ◦

Top
Security

FLTrust [75] Hundreds • ◦ ◦ ◦
SecAgg [51] Hundreds ◦ • • •
Poseidon [48] <Hundred ◦ ◦ • •
PrivaCT [76] Thousands ◦ ◦ ◦ ◦
Cerberus [77] <Hundred ◦ ◦ ◦ ◦
EIFFeL [78] Thousands • ◦ ◦ ◦
Pasquini et al. [79] \ • ◦ ◦ ◦
DP-GDBT [80] \ ◦ ◦ ◦ ◦
Shejwalkar et al. [81] Thousands • ◦ ◦ ◦
Snarkblock [82] \ ◦ ◦ ◦ •
Fang et al. [45] Hundreds ◦ ◦ ◦ ◦
Fu et al. [83] \ ◦ ◦ ◦ ◦
FLDP [84] Thousands ◦ ◦ ◦ •
FLAME [85] Hundred • ◦ ◦ •

Top
DB

Refiner [86] \ ◦ ◦ ◦ ◦
Frog [87] <Hundred ◦ ◦ ◦ ◦
FedGraph [88] \ ◦ ◦ ◦ •
PFA [89] <Hundred • • ◦ ◦
FML [90] <Hundred ◦ ◦ ◦ ◦
CELU-VFL [91] <Hundred • ◦ ◦ •
SMM [92] \ ◦ ◦ ◦ ◦
OpBoost [93] <Hundred ◦ • ◦ •
VF2Boost [39] <Hundred ◦ ◦ ◦ •
BlindFL [94] <Hundred • ◦ ◦ ◦
Xiang et al. [95] <Hundred ◦ ◦ ◦ ◦
FEAST [96] <Hundred ◦ • ◦ •
Li et al. [97] <Hundred ◦ • ◦ •
FedDSR [98] Hundreds ◦ ◦ ◦ ◦
MGFNAS [99] <Hundred • ◦ ◦ ◦
[100] Hundreds ◦ ◦ ◦ ◦
DSANLS [101] Hundreds • ◦ ◦ •
VERTICOX [102] <Hundred • ◦ ◦ •

Top
AI

q-FFL [55] Thousands • ◦ ◦ ◦
Per-FedAvg [60] <Hundred ◦ ◦ ◦ ◦
pFedMe [103] Hundreds • ◦ ◦ ◦
HeteroFL [104] Thousands • • ◦ ◦
FedMix [105] Hundreds • ◦ ◦ •
PartialFed [106] <Hundred ◦ ◦ ◦ •
FRL [107] <Hundred • ◦ ◦ ◦
Pillutla et al. [61] Thousands ◦ ◦ ◦ ◦
Orchestra [59] Hundred • ◦ ◦ •
FedPU [62] <Hundred ◦ ◦ ◦ ◦
FactorizedFL [63] <Hundred • • ◦ ◦
SoteriaFL [64] <Hundred • • ◦ ◦
FedRolex [65] >Thousands ◦ ◦ ◦ ◦
FedNTD [108] Hundreds • ◦ ◦ ◦
MR-MTL [67] Hundreds ◦ ◦ ◦ ◦
Fed-EF [68] Hundreds • • ◦ ◦
VerFedGNN [69] Thousands ◦ • ◦ ◦
FED-PUB [70] <Hundred • ◦ ◦ ◦
FedGMM [71] Hundreds ◦ ◦ ◦ ◦
GuardHFL [66] <Hundred • • ◦ •
PFL [72] \ • ◦ ◦ •

TABLE II: Efficiency evaluations in existing works. O(∗) is
the computation complexity analysis. Black dots indicate that
a given study incorporated the corresponding measure in its
evaluation, while white dots denote that the paper did not
include that measure. Meanwhile, we also summarize the scale
of efficiency evaluation in different studies, represented by the
number of clients.
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FedAvg [35] can reduce communication rounds but may not
decrease overall time consumption, as it requires more local
computation time for each party [115]. Another example
that demonstrates the necessity of considering communication
and computation simultaneously in the efficiency evaluation
is when comparing the efficiency of two different privacy
protection techniques: SS [66, 78, 94, 116] and HE [48, 94].
Intuitively, HE has higher computation complexity than SS
but is more communication efficient than SS [117]. Biased
efficiency comparison may happen if we compare HE and SS
towards only one aspect of computation and communication.
Regarding the number of clients used in the evaluation, we
found that ∼20% of studies used thousands of clients, ∼20%
used hundreds of clients, and ∼60% used fewer than one
hundred clients.

C. Security & Privacy Evaluation Measures

The evaluation of FL methods regarding security and pri-
vacy could be generally conducted from both theoretical and
empirical aspects:

• Theoretical: Are there privacy proofs analyzing the secu-
rity and privacy of proposed methods?

• Empirical: Are there experiment results showing that
the proposed methods can protect participants against
existing attack methods?

While theoretical analysis is a mathematically rigorous way
of validating security and privacy protection, it is still rare in
existing FL papers.6 In addition, security and privacy measures
are typically evaluated in an adversarial manner, assuming
certain types of attacks. Common threats considered in existing
literature include:
[Data Privacy] Data Reconstruction Attacks. In FL, ex-
changing intermediate results is necessary for jointly training
a machine learning model while keeping private data locally.
Some pioneering FL studies leave these intermediate results
unprotected, such as uploading local updates without pro-
tection in FedAvg [35]. Follow-up studies have shown that
raw private data could be recovered from these exchanged
intermediate results, including gradients and model parameters
[43, 44, 52, 118, 119]. Moreover, malicious participants may
be able to reconstruct training data using model inversion
attacks with only the final FL model [120, 121].
[Data Privacy] Inference Attack.: In some cases, the interme-
diate training results and the final FL models are not enough
to recover raw data precisely, but some sensitive attributes
can still be inferred. For instance, adversaries can utilize
intermediate information to train an attack model that infers
whether a party/sample participates in FL model training,
which is known as membership inference attack [122, 123].
[Data Privacy] ID Leakage. In VFL, directly sending sam-
ple IDs and computing the intersection could leak sensitive
information about a party’s customers. Hence, most VFL
methods use private set intersection (PSI) for ID alignment [3].
However, PSI still leaks the sample IDs inside the intersection,

6We investigated 60+ FL papers published on NeurIPS, ICML, ICLR, KDD,
CCS, NDSS, OSDI, etc. in the last five years, and found that less than 10%
provided rigorous proofs.

revealing which users have registered accounts with other
participants.
[Model Security] Byzantine Attacks. Malicious parties can
launch data or model poisoning attacks during the federated
training process so as to downgrade the FL model’s per-
formance, which is known as Byzantine attacks [45]. Data
poisoning attacks involve injecting malicious data samples
before the learning process starts, while model poisoning
attacks assume that adversaries can directly manipulate the
model parameters sent from FL parties to the server.
[Model Security] Backdoor Attacks. Backdoor attacks aim
to control an FL model’s prediction for an attacker-chosen
subtask [46]. Specifically, such attacks can cause a backdoored
FL model to misclassify a data sample to an attacker-chosen
label. In facial recognition applications, this could allow an
attacker to generate a fake ID, posing significant security risks.
Different from Byzantine attacks, backdoor attacks aim to
modify the model’s behavior on a small portion of data without
affecting the overall prediction accuracy significantly. Hence,
backdoor attacks can be particularly challenging to detect since
they often do not show up during normal FL evaluation and
testing procedures.
Threat Model. It is worth noting that a research paper on FL
usually defends against only partial attacks from the above
list. It is essential to first define what are the threats (i.e.,
the threat model) before analyzing the security & privacy.
Typically, the following assumptions would be made for
potential adversaries:

• Security Definition: The security definition defines the
degree of honesty of participants. Generally, two types
of security definitions are used in FL studies:

– Honest But Curious (Semi-Honest): The honest but
curious setting, also known as semi-honest, assumes
that the participants strictly adhere to the pre-defined
protocol but attempt to learn as much information
as possible from the received messages. This setting
is commonly considered in security and privacy
analyses presented in FL papers.

– Malicious: The malicious participants will not
strictly follow the pre-defined protocol, and take any
action to achieve their goal. To model malicious
behavior during joint model training in FL, it is
necessary to consider the specific threats that need
to be protected against. However, defending against
such parties is challenging, and only a few FL studies
have considered them.

• Collusion Party Number: The ability of an FL system’s
defense against attacks from a single party does not
guarantee protection against collusion between multiple
parties. Therefore, it is essential to consider the number
of parties that could collude to conduct attacks when
evaluating an FL system’s privacy and security levels.

Existing Works on Security & Privacy Evaluation. Table III
summarizes the security and privacy evaluation measures in
representative FL papers. It is notable that papers published
in security conferences prioritize security and privacy eval-
uations. In addition, database papers also give significant
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Venues Papers
Security

Definitions
Theoretical

Proof
Empirical

Experiments
Semi

Honest
Malic
ious

Model
Security

Data
Privacy

Model
Security

Data
Privacy

Top
Sys

Oort [38] ◦ ◦ ◦ ◦ ◦ ◦
SFSL [41] • ◦ ◦ • ◦ ◦

Top
Sec-
urity

FLTrust [75] ◦ • • ◦ • ◦
SecAgg [51] • ◦ ◦ • ◦ ◦
Poseidon [48] • ◦ ◦ • ◦ ◦
PrivaCT [76] ◦ ◦ ◦ • ◦ ◦
Cerberus [77] ◦ • ◦ ◦ • ◦
EIFFeL [78] ◦ • • ◦ • ◦
Pasquini et al. [79] ◦ • ◦ ◦ • ◦
DP-GDBT [80] • ◦ ◦ ◦ ◦ ◦
Shejwalkar et al. [81] ◦ • ◦ ◦ • ◦
Snarkblock [82] ◦ ◦ ◦ ◦ ◦ ◦
Fang et al. [45] ◦ • ◦ ◦ • ◦
Fu et al. [83] ◦ • ◦ ◦ • ◦
FLDP [84] • • ◦ • ◦ ◦
FLAME [85] • ◦ • ◦ • ◦

Top
DB

Refiner [86] ◦ • ◦ ◦ ◦ ◦
Frog [87] • ◦ ◦ • ◦ ◦
FedGraph [88] ◦ ◦ ◦ • ◦ ◦
PFA [89] ◦ ◦ ◦ • ◦ ◦
FML [90] ◦ ◦ ◦ • ◦ ◦
CELU-VFL [91] ◦ ◦ ◦ ◦ ◦ ◦
SMM [92] ◦ ◦ ◦ • ◦ ◦
OpBoost [93] ◦ ◦ ◦ ◦ ◦ ◦
VF2Boost [39] ◦ ◦ ◦ ◦ ◦ ◦
BlindFL [94] • ◦ ◦ • ◦ ◦
Xiang et al. [95] ◦ • ◦ • • •
FEAST [96] ◦ ◦ ◦ • ◦ ◦
Li et al. [97] • ◦ ◦ • ◦ ◦
FedDSR [98] ◦ ◦ ◦ ◦ ◦ ◦
MGFNAS [99] • ◦ ◦ • ◦ ◦
Zhang et al. [100] ◦ • ◦ • • ◦
DSANLS [101] • ◦ ◦ • ◦ ◦
VERTICOX [102] ◦ ◦ ◦ ◦ ◦ ◦

Top
AI

q-FFL [55] ◦ ◦ ◦ ◦ ◦ ◦
Per-FedAvg [60] ◦ ◦ ◦ ◦ ◦ ◦
pFedMe [103] ◦ ◦ ◦ ◦ ◦ ◦
HeteroFL [104] ◦ ◦ ◦ ◦ ◦ ◦
FedMix [105] ◦ ◦ ◦ ◦ ◦ ◦
PartialFed [106] ◦ ◦ ◦ ◦ ◦ ◦
FRL [107] ◦ ◦ ◦ ◦ ◦ ◦
Pillutla et al. [61] ◦ ◦ ◦ ◦ ◦ ◦
Orchestra [59] ◦ ◦ ◦ ◦ ◦ ◦
FedPU [62] ◦ ◦ ◦ ◦ ◦ ◦
FactorizedFL [63] ◦ ◦ ◦ ◦ ◦ ◦
SoteriaFL [64] ◦ ◦ ◦ • ◦ ◦
FedRolex [65] ◦ ◦ ◦ ◦ ◦ ◦
FedNTD [108] ◦ ◦ ◦ ◦ ◦ ◦
MR-MTL [67] ◦ ◦ ◦ • ◦ ◦
Fed-EF [68] ◦ ◦ ◦ ◦ ◦ ◦
VerFedGNN [69] • ◦ ◦ • ◦ •
FED-PUB [70] ◦ ◦ ◦ ◦ ◦ ◦
FedGMM [71] ◦ ◦ ◦ ◦ ◦ ◦
GuardHFL [66] • ◦ ◦ • ◦ ◦
PFL [72] ◦ ◦ ◦ ◦ ◦ ◦

TABLE III: Privacy evaluations in existing works. Simi-
larly, the black and white dots represent whether the studies
considered the corresponding measures in the evaluation or
not, respectively. Regarding the security definition, we also
summarize the threat models used in representative works (i.e.,
semi-honest, malicious, or not defined in the paper).

attention to security and privacy concerns in their method
design. Existing work mainly has two approaches to evaluate
data privacy: 1) Provide theoretically proofs to show that the
solutions are differentially private (e.g., [80, 84, 89, 100]) or
all the intermediate results are protected by HE (e.g., [48]) and
secret sharing (e.g., [66, 78, 94]); 2) Perform empirical attack
experiments to show that the solutions are secure against the
state-of-the-art (SOTA) attacks (e.g., [69, 95]). Regarding the
model security, existing studies also explored the evaluation
in two ways: 1) Provide security analysis to show solutions’
ability to defend the attacks (e.g., the utility loss is bounded
under the poisoning attacks [75, 78, 85]); 2) Perform empiri-
cally poisoning attacks to show the solutions’ utility loss under
the attacks (e.g., [45, 83, 95]). We also observe that most FL
papers presented at AI conferences do not explicitly discuss
security and privacy issues. Considering that security and
privacy are primary motivations for developing FL systems,
we suggest that AI papers should also give more attention to
these concerns.

IV. FEDEVAL: A PLATFORM FOR FL SYSTEM
EVALUATION

After reviewing existing FL studies, it is clear that a
standard and easy-to-reproduce procedure for comprehensive
evaluation of utility, efficiency, and security & privacy is
still lacking. We have developed an open-source platform
called FedEval to standardize and simplify the evaluation of
FL algorithms. An overview of our evaluation platform is
presented in Figure 2. To use FedEval, users only need to
provide a single script that contains the necessary FL functions
or callback functions, such as how the server aggregates
the parameters from different clients, to evaluate a new FL
algorithm or test new attack/defense methods. The platform
consists of three key modules.

• Data Config and the FedData module: FedEval cur-
rently provides seven standard FL datasets, including
MNIST, CIFAR10, CIFAR100, FEMNIST, CelebA, Sen-
timent140, and Shakespeare. Different data settings (e.g.,
non-IID data) can be implemented by changing the data
configs. Self-defined data is also supported. We only need
to inherit the FedData class and define the load data
function to add a new dataset, which will share the same
processing functions with the built-in datasets.

• Model Config and the Keras.Model module: Currently,
three machine learning models are built inside our sys-
tem, including MLP, LeNet, and StackedLSTM. We use
TensorFlow [124] as the backend, and all the models are
made via subclassing the Keras model. Thus, adding new
machine learning models is very simple in FedEval.

• Runtime Config and the strategy module: One of the
essential components in FedEval is the strategy module,
which defines the protocol of the federated training.
Briefly, the FL strategy module supports the following
customization:

– Customized uploading message, i.e., which parame-
ters are uploaded to the server from the clients.

– Customized server aggregation method, e.g.,
weighted average.
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Fig. 2: An overview of the FedEval evaluation platform. Users can evaluate existing algorithms using preset datasets in FedEval
under different scenarios by providing the data, model, and runtime configs. Users can also evaluate new algorithms on new
datasets by customizing the data, model, and strategy modules. Using the built-in evaluation goals and measures, FedEval
significantly reduces the workload of the FL evaluation and produces standardized evaluation results.

– Customized training method for clients, e.g., the
clients’ model can be trained using regular gradient
descent method or other solutions like knowledge
distillation.

– Customized method for incorporating the global and
local model, e.g., one popularly used method is
replacing the local model with the global one before
training.

Compared with conventional machine learning, the major
challenge of obtaining standard FL evaluation metrics is how
to appropriately simulate heterogeneous clients and capture
metrics (e.g., communication costs) that reflect real-world
conditions. We introduce the FedEval platform’s approach to
addressing this challenge.

• Participants and Network Simulation. A widely-used
method for simulating multiple participants is using mul-
tiprocessing, but we think it has the following problems:
1) it is hard to control the hardware resources (e.g., CPU
and memory) used by each process; 2) it is hard to
evaluate the performance under different network settings
(i.e., bandwidth and latency). Our solution is putting all
the participants into different docker containers, in which
the hardware resources used by each participant could
be fully controlled, including the CPU, GPU, memory,
disk storage, etc. The server and clients from different
containers communicate through WebSocket. Container
networks bridge the communication between containers.
Under such an architecture design, it is easy to change the
network settings (i.e., bandwidth and latency) by directly
configuring the virtual network interface card (NIC).

• Communication Evaluation. Communication size is an es-
sential evaluation metric for FL algorithms since the par-
ticipants in FL tend to have limited network bandwidth,
and a large communication size may bring significant
efficiency overhead. A naive solution for evaluating the
communication size, which is used in many existing FL
studies, is directly measuring the size of the transmitted

objects in the memory, and many utility packages (e.g.,
the ”getsizeof()” function in Python) could be used.
However, such evaluation implementation may have two
issues: 1) Different packages usually have different re-
sults; 2) Not all the objects could be accurately assessed
using this method. To solve these problems, we measure
the communication size by directly collecting data from
the virtual NIC, which automatically records the amount
of data sent out and received. Compared with measuring
the transmitted data size in memory, our solution is more
accurate and significantly reduces the implementation
complexity.

• Time Evaluation. The implementation of time evaluation
in FL is challenging because it may have many variations
based on different purposes. For example, apart from
the overall time consumption in each training round,
we would also like to provide other time consumption
statistics to help the users improve the FL algorithms, e.g.,
the computation and communication time of the clients,
the aggregation time at the server, etc. The naive imple-
mentation of these time evaluation metrics is complicated
and requires significant modifications to the platform’s
source code. Our solution is providing a flexible time
evaluation by collecting a group of timestamps, through
which multiple time evaluation metrics could be calcu-
lated. Specifically, as illustrated in Figure 3, we put four
timestamps in the platform, which are the time of server
sends parameters (t1), clients receive parameters (t2),
clients send parameters (t3), and server receives parame-
ters (t4). Assuming we have k clients in the training, then
{(ti1, ti2, ti3, ti4)|1 ≤ i ≤ k}n represents all the timestamps
collected in the i-th round. Different combinations of
these timestamps have different meanings:

– Client computation time (average): 1
k

∑k
i=1(t

i
3− ti2).

– Server aggregation time in the n-th round:
sa = min({ti1|1 ≤ i ≤ k}n) − max({ti4|1 ≤ i ≤
k}n+1)
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Fig. 3: The FedEval’s detailed workflow when evaluating customized algorithms. Users can provide scripts encompassing
different strategy functions, enabling the assessment of various customized algorithms. For instance, these functions can
customize the aggregation of parameters and the process of updating the global parameters to the local models. Additionally,
users can test diverse attacking and defending techniques through different callback functions. As illustrated, clients can perform
customizable data poisoning prior to local training and model poisoning before uploading updates. Conversely, the server can
execute customizable data-revealing attacks and defend against poisoning attacks originating from the client side. We put the
full description of the function interface of FedEval in Appendix A.

– Real-world time consumption in the n-th round:
min({ti1|1 ≤ i ≤ k}n)−min({ti1|1 ≤ i ≤ k}n+1)

– Federated time consumption in the n-th round:
sa+max({ti4 − ti1|1 ≤ i ≤ k}n)

Our platform records all the timestamps and outputs the real-
world and federated time consumption. The users can compute
more metrics based on these timestamps.

With appropriate client simulation, resource control, and
efficiency measurements, the other metrics could be easily
obtained. For example, the straggler evaluation in the utility
could also be done by allocating clients with heterogeneous
computing or networking resources. The entire system is
open-sourced, and the essential components, such as datasets,
ML models, and FL strategies, can be easily used or self-
defined. Researchers can easily implement their new FL
method ideas and evaluate them with FedEval (e.g., FedSVD
[113]).

To demonstrate the usability of FedEval, we present its
detailed workflow when evaluating customized algorithms in
Figure 3. As illustrated in the figure, the researchers can
provide strategy functions to customize the behaviors of the FL
algorithm, e.g., how the parameters are aggregated at the server
and how to set the global updates to the local model. Mean-
while, the researchers can use customized callback functions
to perform experiments of attacking and defending against
the attacks. On the client side, we can use callback functions
to poison the data before local training or poison the model
before uploading local updates. On the server side, we can

use callback functions to perform data-revealing attacks when
receiving individual client updates and detect the poisoning
updates before the aggregation. Due to the space limitation,
we put the full description of the function interface of FedEval
in Appendix A.

An important characteristic of FedEval is its capability
to evaluate an FL algorithm’s performance from a holistic
perspective including utility, efficiency, and security & pri-
vacy. We have tested representative FL algorithms, including
FedSGD [35], FedAvg [35], FedProx [74], FedOpt [110], etc.
Table IV shows the utility evaluation of these four algorithms,
i.e., comparing the effectiveness to local and central training
and the effectiveness under non-IID data. The utility evaluation
shows that all the tested FL algorithms have significantly better
performance than local training and show a small decrease in
accuracy compared to centralized training on most datasets.
Regarding the robustness under non-IID data setting, FedProx
has the best performance and yields the best average effective-
ness under non-IID data, which matches the results reported
from the original paper. Figure 4 shows the efficiency com-
parison of these four algorithms regarding the communication
rounds, communication amounts, and time consumption. The
efficiency evaluation shows that FedSGD tends to have worse
efficiency compared to the other three algorithms, and FedOpt
shows superior efficiency on a relatively large dataset (i.e.,
Shakespeare), which also matches the results report from the
original paper. Figure 6 shows the data reconstruction attack
[43] between FedSGD and FedAvg. Theoretically, FedProx
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Fig. 4: Efficiency evaluation of four popular FL methods through FedEval on four datasets. The results show that FedSGD
has the worst efficiency regarding both communications and computations, and FedOpt has superior efficiency on the larger
dataset (i.e., Shakespeare), which match the results reported by original papers.
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Fig. 5: Visualizing the FedEval evaluation results through radar charts which compare four most popular FL algorithms from
security and privacy, utility (i.e., robustness and effectiveness), and efficiency (i.e., communication and time consumption).
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Fig. 6: FedSGD vs. FedAvg under the data-reconstruction
attack [43]. FedAvg has better performance than FedSGD by
having lower attack label accuracy and higher L2 distance
between the recovered and real samples.

and FedOpt have the same attack results as FedAvg since
clients in these protocols upload the same information (i.e.,

parameters after multiple rounds of local updates) to the server.
Figure 6 shows that FedAvg has better performance than
FedSGD. The possible reason is that the parameters uploaded
in FedAvg contain multiple rounds of local training while
FedSGD only has one round of training, and the accumulated
local updates in the parameters make it harder to recover the
raw data.

While the above table and figures independently present
the evaluation results regarding utility, efficiency, and privacy,
we also attempt to merge the evaluation results into one
radar chat to provide an overview as well as highlight the
strengths and weaknesses of each algorithm. The final results
are presented in Figure 5. We put the detailed methods for
obtaining the radar charts on an online document7 due to the
space limitation and ease of future updates, i.e., we will also
continue evaluating more algorithms and the radar charts may
also be updated accordingly. For more detail of FedEval, e.g.,
the interface design, please refer to our technical report [115]

7https://fedeval.readthedocs.io/en/latest/benchmark/benchmark.html
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TABLE IV: Utility evaluation of four popular FL methods
through FedEval on four datasets. All the experiments are
repeated ten times, and the average values and standard error
(i.e., values in parentheses) are reported. The MNIST dataset
adopts the non-IID label setting, while the other datasets adopt
the non-IID feature settings.

Dataset IID Local Central FedSGD FedAvg FedProx FedOpt

mnist N 0.11319
(0.013)

0.98614
(0.001)

0.98390
(0.001)

0.97843
(0.006)

0.97874
(0.003)

0.97679
(0.003)

mnist Y 0.98341
(0.002)

0.98651
(0.001)

0.98683
(0.001)

0.98351
(0.001)

femnist N 0.48231
(0.056)

0.84961
(0.002)

0.80461
(0.015)

0.81234
(0.004)

0.81288
(0.005)

0.80783
(0.003)

femnist Y 0.81351
(0.012)

0.83476
(0.004)

0.83385
(0.002)

0.83187
(0.004)

celebA N 0.70307
(0.007)

0.92400
(0.005)

0.91707
(0.005)

0.90170
(0.005)

0.90120
(0.007)

0.89913
(0.008)

celebA Y 0.91867
(0.006)

0.90267
(0.012)

0.90210
(0.011)

0.89957
(0.011)

sent140 N 0.74447
(0.006)

0.79263
(0.002)

0.74131
(0.006)

0.75578
(0.003)

0.75626
(0.003)

0.75263
(0.004)

sent140 Y 0.74024
(0.005)

0.76504
(0.004)

0.75839
(0.005)

0.74955
(0.007)

Average N
0.51076 0.88809

0.86172 0.86206 0.86227 0.85909

Average Y 0.86395 0.87224 0.87029 0.86612

as well as the online document8.
In summary, FedEval provides a flexible framework for

researchers to produce standardized evaluation results that
closely mimic real-world settings using the measurements
summarized in this survey. FedEval also reduces the workload
required for comprehensive analysis since researchers only
need to define the FL workflow (i.e., through scripts), and
evaluations can be automatically completed using the built-in
metrics on the platform. While being a platform that makes
a significant contribution to the evaluation of FL, FedEval
also has two limitations. Firstly, while the platform provides
good support for utility and efficiency evaluations, the attacks
for privacy and security evaluation still need to be enriched.
Secondly, the automated evaluation of vertical FL algorithms
is currently not supported by FedEval. We will keep updating
the platform in the future to solve these two limitations,
i.e., adding more attacks regarding the privacy and security
evaluation and adding support for the evaluation of vertical
FL.

V. FUTURE DIRECTIONS

In this section, we summarize several challenges and future
research directions in FL evaluation.

A. A Comprehensive Evaluation Procedure

While existing works focus on one or two issues in FL,
their evaluation results are also restricted to the corresponding
areas. For example, FedAvg [35] tries to reduce the communi-
cation rounds by adding the number of clients’ local updates.
However, the resulting increased local running time is not

8https://fedeval.readthedocs.io/

evaluated; non-IID issues are not thoroughly tested. FLTrust
[75] proposed a Byzantine attack-robust FL framework by
carefully verifying clients’ uploaded updates; however, indi-
vidual updates for verification may bring the risk of private
data leakage. As trade-offs widely exist in FL system design
(Sec. II-D), only a comprehensive evaluation process can
help practitioners make the optimal decision on the design
of practical FL systems and applications.

B. Standard Evaluation Metrics

Although the comprehensive evaluation gives us a thorough
assessment of FL frameworks, comparing different FL studies
is still very difficult because the existing evaluation metrics are
incompatible. Different studies usually have different focuses
in the evaluation. For example, model A improves the FL
communication efficiency by 10%, and model B improves the
FL computation efficiency by 15%. We cannot conclude that
model B is better than model A and vice versa since none
of these two metrics (i.e., communication and computation)
are always more important than the other one in different
applications.

Thus, we need a set of FL evaluation metrics that are
commonly agreed to be compatible with different scenarios,
i.e., a set of standard evaluation metrics. In other words, FL
studies could be compared using these standard metrics under
different scenarios with no ambiguity.

One good example of a compatible metric is the energy
and carbon footprint [125] since environmental wellness is
one of the most important tasks of our society. FL models
with fewer carbon emissions are better when achieving the
same effectiveness.

C. Real-time and Continuous Evaluations

The evaluation of FL systems should be a real-time and
continuous process. Specifically, the evaluation system should
have the following functionalities:

• Utility & Efficiency Evaluation: Requiring an easy-to-
use evaluation interface and a group of benchmarking
results (e.g., FL leaderboard). The system should enable
researchers to evaluate new modes quickly, e.g., by up-
loading a simple script, and the system will automatically
evaluate the new model. The evaluation results could be
presented using a leaderboard, from which the researchers
could quickly specify the state-of-the-art FL model and
make performance comparisons.

• Security & Privacy Evaluation: Requiring a real-time and
continuous verification to detect the attacks. Most of the
FL studies use semi-honest security definitions, however,
the security under the semi-honest assumption is not good
enough for real-world applications because the parties
that participated in the distributed training cannot fully
trust each other, i.e., they will not believe that the others
are semi-honest. Thus, real-time verification is essential
to monitor each party’s behavior and detect malicious
participants deviating from the protocol. Furthermore,
as we mentioned in section Section III-C, private data
leakage or model tampering may happen before, during,
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and after the FL training. Thus, security and privacy
verification should be a real-time and continuous process.

D. Contribution Evaluation for Incentive Design

While not discussed in detail in this article, the incentive is
also significant for FL, as parties work together only when
incentives are designed satisfactorily. A suitable incentive
mechanism in FL should satisfy the participants’ rationality,
meaning that each party’s reward should be greater than
the cost of joining the federation. Meanwhile, the parties
with more contributions should gain more rewards to achieve
fairness. There are also many other targets of designing an
incentive mechanism for FL, such as reducing the delay in
distributing rewards [9]. The evaluation plays a vital role in the
incentive mechanism, especially when evaluating the partici-
pants’ contributions. Intuitively, one participant’s contribution
could be evaluated by comparing the model performance when
trained with and without its datasets, e.g., Shapley values [126]
is often adopted. The evaluation system could incorporate real-
time contribution evaluation and reward distribution to serve
as an incentive mechanism.

E. Evaluation on FL platforms

FL platforms are those frameworks that support simulating
FL algorithms locally for research purposes or running FL
in a distributed manner for industry applications. With the
development of FL, many platforms have appeared: e.g.,
FATE [127], FedML [128], FedScale [129], etc. However,
in real-world applications or research studies, it is usually
hard for users to determine which platform is the best choice
under a certain scenario. Thus, evaluating these platforms
is essential to benchmark and compare their efficiency and
effectiveness under different scenarios. Meanwhile, we can
also perform attack experiments on those platforms to assess
privacy protection and uncover potential privacy issues before
utilizing them in real-world applications. Notably, we can
extend the evaluation goals and measures in this survey
from evaluating algorithms into platforms, containing utility,
security & privacy, and efficiency. We discuss the extensibility
of FedEval to evaluate different FL platforms in Appendix B.

VI. CONCLUSION

In this survey, we provide a comprehensive overview of
the evaluation goals and measures for FL studies. We cate-
gorized the key evaluation goals into utility, efficiency, and
security & privacy. For each goal, we reviewed commonly
used metrics and evaluation methods from existing literature.
We also discussed the necessity of conducting comprehensive
evaluations across all goals due to the trade-offs between
them. To facilitate such comprehensive analysis, we introduced
FedEval, an open-source platform that simplifies implementing
standardized FL evaluations.

We also summarized several open challenges and future
directions for FL evaluations. First, establishing standard-
ized evaluation metrics that are compatible with different
scenarios would enable fairer comparisons between different

FL solutions. Second, developing capabilities for real-time
verification of efficiency, utility, and especially security would
be highly valuable for practical deployments. Third, evaluating
the contributions of participants could support the design of
incentive mechanisms.

Overall, as FL continues maturing from the research domain
towards real-world applications, strong evaluation methodolo-
gies will play an indispensable role in ensuring system quality
and user trust. We hope this survey provides a useful reference
for future efforts in advancing FL evaluation.
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