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Fully Homomorphic Encryption (FHE) is a key technology enabling privacy-preserving computing. However, the fundamental
challenge of FHE is its inefficiency, due primarily to the underlying polynomial computations with high computation complexity
and extremely time-consuming ciphertext maintenance operations. To tackle this challenge, various FHE accelerators have recently
been proposed by both research and industrial communities. This paper takes the first initiative to conduct a systematic study on
the 14 FHE accelerators — cuHE/cuFHE, nuFHE, HEAT, HEAX, HEXL, HEXL-FPGA, 100×, F1, CraterLake, BTS, ARK, Poseidon,
FAB and TensorFHE. We first make our observations on the evolution trajectory of these existing FHE accelerators to establish a
qualitative connection between them. Then, we perform testbed evaluations of representative open-source FHE accelerators to provide
a quantitative comparison on them. Finally, with the insights learned from both qualitative and quantitative studies, we discuss
potential directions to inform the future design and implementation for FHE accelerators.

CCS Concepts: • Computer systems organization → Parallel architectures; • Security and privacy → Cryptography.

Additional Key Words and Phrases: Fully Homomorphic Encryption, Accelerator

1 Introduction

With the increasing concern about data privacy and integrity, privacy-preserving computing has been adopted in many
real-world applications, e.g., cloud computing [84], machine learning [73, 87], database search [74], etc. Among all
the privacy-preserving technologies, fully homomorphic encryption (FHE) emerges as one of the most important and
promising technologies and has been adopted in various applications [35, 67, 74, 88]. Specifically, FHE allows performing
arbitrary operations directly over the encrypted data without decryption, making it appealing for privacy-preserving
computation.

Although promising, one fundamental drawback of FHE is its inefficiency. Compared to plaintext computation,
FHE-enabled computation is orders of magnitude slower, which restricts its deployment in many performance-critical
systems. To solve this problem, various optimizations have been proposed. One direction is to improve the efficiency of
the algorithm. For example, modern FHE schemes, such as BGV [32], BFV [50], and CKKS [37], all support SIMD-like (i.e.,
batching) operations [83] to pack many plaintext messages into one ciphertext to improve the execution efficiency.
Instead of studying these algorithm-level performance optimizations, in this paper we focus on the other key direction
— leveraging hardware accelerators to improve the efficiency of FHE schemes1.

∗Both authors contributed equally to this research.
1Note that algorithm optimization and hardware acceleration are complementary, and can be combined to improve the overall performance.
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Before introducing FHE accelerators, we first illustrate what makes FHE slow and the challenges of acceleration. In
this paper, we find that the root cause of FHE’s inefficiency is two-fold: underlying polynomial computations with high
computation complexity and two extremely time-consuming ciphertext maintenance operations. First, most of FHE’s
underlying operations are polynomial operations, which are much more complex than plaintext computation, where
operands are integers or floating numbers. While Fast Fourier Transform (FFT)/Number Theoretic Transform (NTT) can
be utilized to speed up the polynomial operations [41] from algorithm-level, further accelerating NTT/FFT faces chal-
lenges in three aspects: high computation complexity, extremely intensive memory access, and limited generality (§4.1).
Second, compared to plaintext computation, FHE requires ciphertext maintenance operations to ensure correctness.
Such operations involve over-complicated computation steps, causing further performance degradation. Although they
are built upon polynomial operations, fully accelerating ciphertext maintenance operations is more challenging in
terms of the aforementioned three aspects compared to merely accelerating polynomial operations (§4.2 and §4.3).

To improve the efficiency of FHE, FHE accelerators are proposed. Initially, these accelerators rely on features provided
by general hardware. For example, Intel proposed Intel Homomorphic Encryption Acceleration Library (HEXL) to
leverage AVX-512 instructions for fast NTT operations [28]. nuFHE [5] and 100× [62] used GPU implementations, i.e.,
CUDA [13] programs, to accelerate TFHE [39] and CKKS [37] respectively. While providing notable acceleration for
FHE schemes, these accelerators are far from satisfactory.

To further improve the performance of FHE schemes, people begin to exploit specific-designed hardware accelerators.
Field Programmable Gate Array (FPGA) is first used to build circuits to efficiently execute NTT, inverse NTT (iNTT),
and key-switching in FHE schemes [11, 42, 43, 47, 71, 72, 78]. These FPGA-based accelerators are affordable but
suffer from intrinsic disadvantages of FPGA itself: limited programmable resources and low working frequency [66].
Then, to overcome these disadvantages, people are seeking expensive Application-specific Integrated Circuit (ASIC)
technologies to build high-performant FHE accelerators [63, 65, 81, 82]. While the acceleration ratios of these ASIC-
based accelerators are promising, e.g., ∼ 1000× and ∼ 100× NTT throughput compared to FPGA-based and GPU-based
solutions respectively, they are way more expensive. For instance, developing and taping out a 12nm ASIC like [82]
requires millions of US dollars.

In the recent decade, we have seen an explosive growth of FHE accelerators [11, 42, 43, 47, 63, 65, 71, 72, 78, 80–82],
and expect an increasingly more active development of FHE accelerators in the near future. However, we lack a
comprehensive and systematic study to shed light on the status quo of existing FHE accelerators, which could inspire
the future design and implementation of FHE accelerators.

Motivated by this, we take the first initiative to perform the systematization of knowledge on FHE accelerators. We
first review 14 existing FHE accelerators and make observations on the evolution trajectory of these works, which
establishes a qualitative connection among them (§5). Then, to give readers a clear view of how these accelerators
perform, we present a quantitative analysis of them. Specifically, we use testbed experiments to evaluate the performance
of some representative open-source accelerators, and further include the statistics from papers of other well-known but
closed-source accelerators for thoroughness (§6). Finally, based on our qualitative and quantitative analysis, we discuss
the potential future directions, such as new design tradeoffs, software/hardware co-designs, scaling methodologies, etc.,
to inform the future design and implementation of FHE accelerators (§7).

Along with the paper, we provide a Docker image2 that includes all configurations and scripts for performance
evaluations of all open-sourced FHE accelerators used in our paper, which can be readily reused by the community.

2https://hub.docker.com/r/hpfilter/sok-fhe-accelerator
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Related Works: Systematization of knowledge on FHE library [22] and compiler [86] have already been proposed. To
the best of our knowledge, our paper is the first systematization of knowledge on FHE accelerators. FHE accelerators are
closely related to FHE libraries and compilers. For example, some FHE accelerators are designed to work with particular
FHE libraries, e.g., HEAX chooses SEAL [17] as its target library to accelerate. Moreover, an increasing number of FHE
accelerators use compilers for a software/hardware co-design [63, 65, 81, 82]. However, few FHE accelerators consider
leveraging existing FHE compilers, such as EVA [46], E3 [38], etc., which, in our opinion, still leaves dramatic design
space for better performance and flexibility.

2 Preliminaries

In Table 1, we list the notations used in the paper. Here, we define a polynomial 𝐴 as follows:

𝐴(𝑥) =
𝑛−1∑︁
𝑗=0

𝑎 𝑗𝑥
𝑗 (1)

The degree of a polynomial is the highest power of the variable 𝑥 with a non-zero coefficient. Integer 𝑛 is defined as
the degree-bound of the polynomial, which is strictly larger than the degree of the polynomial [41]. In many previous
works, 𝑛 is also called the degree of a polynomial for simplicity. In this paper, we use the term degree rather than
degree-bound to refer to 𝑛.

2.1 Ciphertexts and Keys

In this paper, all the cryptosystems are asymmetric, which means we have encrypt plaintext𝑚 with public key pk and
decrypt ciphertext ct with secret key 𝑠 . All the ciphertexts and keys in the algorithms covered in the paper are in the
form of polynomials. Therefore, the underlying operations of FHE schemes are all polynomial operations.

2.2 Polynomial Operations

As discussed, polynomial operations, including polynomial additions and multiplications, are the basic building blocks
of the FHE algorithms. To implement the operations, there are two common representations of a polynomial: coeffi-
cient representation and point-value representation. The polynomials in FHE are naturally stored in the coefficient
representation. However, the time complexity of multiplication between polynomials in the coefficient representation
is 𝑂 (𝑛2), while it can be reduced to 𝑂 (𝑛) with the point-value representation. A popular approach for representation
conversion is the Fast Fourier Transform, which leverages the idea of divide-and-conquer to reduce the conversion
time complexity to 𝑂 (𝑛 log𝑛). Note that FFT only works on complex numbers. For RLWE-based FHE schemes, we also
need Number Theoretic Transform, which is a generalization of FFT but works over finite fields. Readers may refer to
Appendix A for more details.

2.3 RNS Decomposition

FHE schemes are mainly constructed over polynomial rings, which means we perform polynomial operations with
the coefficients modulus 𝑄 and 𝑃 . 𝑄 and 𝑃 are large integers chosen for ciphertext calculation and key generation,
respectively. However, polynomial operations with large integers lead to performance degradation [37]. For performance
optimization, a common strategy is to use Residue Number System (RNS). RNS decomposes modulus 𝑄 and 𝑃 into the
product of several smaller coprime moduli 𝑞0 · 𝑞1 · · · · · 𝑞𝐿 and 𝑝0 · 𝑝1 · · · · · 𝑝𝛼 , allowed by the Chinese Remainder
Theorem (CRT) [52]. Multiple polynomials with smaller moduli are used to replace the original polynomial. By applying

3



Notation Definition

𝑛 Degree of a polynomial.
𝑚 Plaintext.
ct Ciphertext.
𝑠 Secret key.
pk Public key.
𝑄 Coefficient modulus of ciphertext polynomial.
𝑃 Special modulus for the keys.
{𝑞𝑖 , 𝑖 ∈ [0, 𝐿] } A set of moduli.𝑄 =

∏𝐿
𝑖=0 𝑞𝑖 .

{𝑝𝑖 , 𝑖 ∈ [0, 𝛼 − 1] } A set of special moduli. 𝑃 =
∏𝛼−1

𝑖=0 𝑝𝑖 .
𝐿 Multiplicative depth of a fresh ciphertext.
𝑙 Current multiplicative depth of a ciphertext.
dnum Decomposition number in key-switching.
𝛼 # of special moduli 𝑝𝑖 . 𝛼 = ⌊ (𝐿 + 1)/dnum⌋.
{𝑄 𝑗 , 𝑗 ∈ [0, dnum] } A set of modulus factors.𝑄 𝑗 =

∏( 𝑗+1)𝛼−1
𝑖=𝑗𝛼

𝑞𝑖 .
swk Switching key for key-switching.
𝑞 Coefficient modulus of plaintext polynomial.
Δ Scaling factor.

Table 1. Notations used in this paper.

RNS to FHE, the coefficient size of polynomials is greatly reduced at the cost of decomposing each polynomial into
multiple ones. Since the calculation complexity of modular multiplication is roughly proportional to the square of
the coefficients’ bit width, the overall complexity is reduced. In word-wise FHE algorithm, the value 𝐿 is also called
the multiplicative depth of a ciphertext as the moduli 𝑞0 · 𝑞1 · · · · · 𝑞𝐿 are gradually consumed by the homomorphic
multiplications and 𝐿 usually determines the maximum number of multiplications that can be supported by the FHE
ciphertexts.

3 Fully Homomorphic Encryption

Homomorphic encryption is an encryption scheme that allows performing arbitrary computation over ciphertexts
without decrypting them. For example, Paillier is an additive homomorphic encryption scheme thus we can perform
additions over ciphertext [76], while RSA [79] is a multiplicative homomorphic encryption scheme. In this paper, we are
focusing on fully homomorphic encryption (FHE) schemes3, which allow both additive and multiplicative homomorphic
operations.

Current FHE schemes can be categorized into word-wise FHE and bit-wise FHE [69]. Word-wise FHE supports
algebraic operations on word-based (or message-based) encrypted data. Moreover, word-wise FHE supports efficient
single-instruction-multiple-data (SIMD) style homomorphic operations, e.g., performing homomorphic addition and
multiplication over batched plaintext [83]. However, word-wise FHE is not suitable for evaluating non-polynomial
functions, e.g., sigmoid/relu functions, which are commonly used in machine learning applications. Examples of
word-wise FHE are CKKS [37], BFV [50], BGV [32], etc. In contrast, bit-wise FHE supports operations of boolean
circuits. As its name indicates, bit-wise FHE schemes encrypt each bit of the plaintext and are usually used to evaluate

3Similar to [86], FHE schemes in our paper include leveled FHE.

4



FHE Schemes (BFV/BGV/CKKS/TFHE…)

Homomorphic Evaluation
Operations

Encryption, Decrption, 
Encoding and Decoding

Ciphertext Maintenance 
Operations

Addition Multiplication Permutation Key-switching Bootstrapping Modulus Switching

Polynomial Computations

Contain operations

Intensive Memory AccessHigh Computation Complexity Limited Generality

Has challenges

Section 3

Section 2

Bit Ops

Ops Supported by word-wise FHE Ops Supported by bit-wise FHE

Fig. 1. Overview of the operations used in FHE schemes.

non-polynomial operations by constructing lookup tables. Bit-wise FHE schemes do not provide sufficient support for
SIMD-style operations and usually suffer from a higher degree of ciphertext inflation, which poses a larger challenge to
memory bandwidth. Examples of bit-wise FHE schemes are TFHE [39] and FHEW [49]. In order to support real-world
privacy-preserving applications, such as privacy-preserving machine learning, both word-wise and bit-wise FHE
schemes are used together [31, 69].

In this article, we focus on word-wise FHE algorithms constructed over ring learning with errors problem (RLWE) (e.g.,
BFV, BGV and CKKS) [70] and bit-wise FHE algorithm (e.g., TFHE) [55] because they are practical and widely adopted.
Since these FHE schemes mainly manipulate polynomials over finite fields or torus, most of the operations to be
discussed later are made up of polynomial computations. In the following sections, we will show them in detail. Figure 1
demonstrates the relationship of operations of FHE.

3.1 Encoding, Decoding, Encryption & Decryption

Encoding and Decoding: The goal of encoding is to convert plaintext messages into polynomials for the subsequent
homomorphic operations. Please note that by packing a vector of numbers during encoding, specific FHE schemes,
such as BGV and BFV, can naturally support SIMD-style operations. Conversely, decoding is used to recover plaintext
messages from polynomials.

Encryption: In an asymmetric encryption system, a ciphertext ct is generated by obfuscating the plaintext with a public
key and noises. For example, in RLWE-based FHE, the public key is an RLWE instance, pk = (pk0, pk1) = (𝑎𝑠 + 𝑒, 𝑎),
generated from the secret key 𝑠 . The coefficients of random polynomial 𝑎 are uniformly sampled from interval
(−𝑄/2, 𝑄/2], and coefficients of noise polynomial 𝑒 are independently sampled from a discrete Gaussian distribution.
The encryption is formulated as

ct = (𝑐0, 𝑐1) = 𝑣 · pk + (Δ ·𝑚 + 𝑒1, 𝑒0) mod 𝑄, (2)

where𝑚 is the plaintext (i.e., encoding result), 𝑒0 and 𝑒1 are also noise polynomials, 𝑣 is a random polynomial with
small coefficients, and Δ is the scaling factor in some schemes to control precision.

Decryption: Although different FHE schemes use different decryption workflows, the common objective is to recover
the plaintext by removing 𝑎 · 𝑠 from the ciphertext. As a result, they share the same core operation in decryption, which
is 𝑐0 − 𝑐1 · 𝑠 .

5



3.2 Homomorphic Evaluation

For word-wise FHE, major homomorphic evaluations include multiplications, additions, subtractions and permutations,
which are sufficient for most applications. Non-polynomial functions can also be achieved via polynomial approximation,
which covers a large range of applications. Bit-wise FHE schemes can efficiently evaluate bit operations, including NOT,
AND, NAND, OR and XOR, which can provide accurate results of non-polynomial functions.

However, homomorphic evaluations lead to two significant problems. First, operations such as multiplication and
permutation construct special ciphertexts that cannot be directly decrypted or used as the input of subsequent operations.
Second, as noise is introduced to secure the ciphertext in FHE schemes, it gradually grows during FHE operations,
especially in homomorphic multiplications. After the noise exceeds a threshold, it will impact the correctness of the
decryption. Therefore, ciphertext maintenance operations, e.g., key-switching, modulus-switching and bootstrapping,
are required in FHE to solve these problems.

3.3 Ciphertext Maintenance

Key-switching: As its name implies, key-switching homomorphically switches the secret key of a ciphertext while
keeping the corresponding plaintext unchanged. More specifically, ct is the ciphertext of plaintext𝑚, and it can be
decrypted with some special secret key 𝑠′. After executing ct′ = Keyswitch(ct, swk), ciphertext ct′ can be decrypted
with the original secret key 𝑠 and the corresponding plaintext is still𝑚. In the equation, swk is a pre-generated public
key called switching key, and it can be considered a ciphertext of 𝑃 ·𝑠′ with modulus 𝑃 ·𝑄 . 𝑃 is an integer used to control
the scale of noise in key-switching. After certain operations such as homomorphic multiplication and permutation,
key-switching is leveraged to convert the resulting ciphertexts back into the original form for the following operations.
Therefore, it is intensively used in FHE schemes.

Modulus Switching and Multiplicative Depth: Generally speaking, modulus switching refers to the operations that
switch the modulus of a ciphertext. It is largely applied in FHE schemes to raise or reduce the modulus for different
purposes. In particular, RLWE-based FHE schemes introduce modulus switching to control the proportion of noise in the
ciphertext at the cost of reducing the modulus𝑄 . When𝑄 is too small to support further operations, the noise cannot be
reduced anymore. Consequently, the size of modulus 𝑄 limits the number of consecutive homomorphic operations on a
freshly encrypted ciphertext. The number is also called the maximum multiplicative depth (or budget) 𝐿 of arithmetics
supported by the FHE scheme. Such FHE schemes are usually called leveled fully homomorphic encryption (leveled FHE)
because of the limitations on 𝐿. In this paper, we use the term deep and shallow to describe applications that consume
large multiplicative depth (e.g., deep neural networks [67]) and those that only contain a few multiplications (e.g.,
database lookup [8]), respectively. Leveled FHE schemes are designed to be efficient for shallow computations. In deep
applications, excessive 𝑄 dramatically reduces the performance. Bootstrapping is leveraged to refresh the ciphertext
and recover the multiplicative depth, which we will discuss next.

Bootstrapping: Bootstrapping is a generic term for operations that refresh a ciphertext in FHE. Their common idea is
to homomorphically recrypt the old ciphertext and generate a fresh one.

In bit-wise FHE schemes such as TFHE, bootstrapping is performed in every bit-wise operation. Therefore, multi-
plicative depth is not considered in TFHE. The most time-consuming part of bootstrapping in TFHE is the homomorphic
evaluation of a lookup table (LUT). The lookup process can be implemented through a large number of multiplexer (MUX)
gates. Since the MUX gate mainly consists of polynomial additions, subtractions and multiplications, polynomial com-
putations are the major workload in TFHE.

6



Unlike bit-wise FHE, bootstrapping in RLWE-based word-wise FHE schemes is more complicated. We tend to reduce
the frequency of bootstrapping and perform one only when the current multiplicative depth is not enough. It is worth
noting that bootstrapping combines multiple operations, including many multiplications, thus consuming considerable
multiplicative depth by itself. The concrete implementations of bootstrapping are not the same in various word-wise
FHE algorithms, but their workflow can be summarized into four common steps.
Step 1. Modulus Switching: In word-wise FHE, the multiplicative depth is proportional to the modulus size of the
ciphertext. Therefore, the modulus should be raised if more multiplications are needed. Given ciphertext ct under
modulus 𝑄 , the first step in bootstrapping is to generate a new ciphertext ct′ encrypting the same plaintext while
extending the modulus to 𝑄 ′ which satisfies 𝑄 ′ ≫ 𝑄 .
Step 2. CoeffToSlot: Although themodulus of the ciphertext has been raised, the decryption formula no longer holds since
the coefficients of the plaintext polynomial are not guaranteed to be bounded by the modulus of the plaintext during the
process of modulus switching. In this case, homomorphic evaluations are required to modulo the coefficients. However,
we can only operate on plaintext slots rather than polynomial coefficients with homomorphic operations in FHE. To
make the coefficients accessible for homomorphic evaluations, homomorphic encoding should be performed in advance
to put the coefficients of plaintext polynomial into the plaintext slots. This process is also called CoeffToSlot [36, 60] or
linear transformation [34, 58].
Step 3. Homomorphic Evaluation: Homomorphic evaluations in bootstrapping are introduced to modulo the coefficients
of plaintext polynomial. They contain non-polynomial functions that can not be directly executed in FHE. For example,
in BGV and BFV, the main operation of this step is digit extraction, while modulus reduction is the dominant operation
of this step in CKKS. Thus, in modern FHE implementations, approximation schemes such as Taylor expansion [36]
and optimized Chebyshev method [34, 60] are used to alternatively evaluate high-degree polynomials.
Step 4. SlotToCoeff: After homomorphic evaluation, the results in the plaintext slots should be placed back to the
coefficients of the plaintext polynomial. The process is an inverse operation of CoeffToSlot, which is called SlotToCoeff
or inverse linear transformation.

4 What Makes FHE Slow & the Challenges of Accelerating Them

FHE is an ideal solution for many privacy-preserving applications since it can simultaneously protect confidential data
and satisfy emerging data protection lawsuits and regulations [6]. However, FHE still suffers from inefficiency, which is
the focus of the paper. It is worth noting that previous works have also mentioned several other reasons restricting
the broad adoption of FHE, such as its usage complexity [86]. However, we believe the inefficiency problem is still the
major roadblock to FHE’s adoption in the production environment.

In this paper, we have identified the cause of FHE’s inefficiency as a two-fold problem. First, most of FHE’s operations
are built upon polynomials [32, 37, 39, 50]. Therefore, FHE is inefficient since polynomial computations, specifically
polynomial multiplication, are naturally much more complex than integer/floating number calculations. Second, two
necessary ciphertext maintenance operations, i.e., key-switching and bootstrapping, are extremely time-consuming
since they involve very complicated computations. As reported in ARK [63], the two major components (i.e., NTT and
fast basic conversion, which will be introduced in detail later) in key-switching take up more than 80% of the total
computation time. According to the analysis in [82], bootstrapping may take up over 90% of computation time in an
end-to-end FHE task (bootstrapping consists of key-switching operations).
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Fig. 4. Workflow of NTT/FFT with 𝑛 = 8 with CT butterfly

To solve the problems, FHE accelerators are proposed. They target improving the performance of FHE schemes by
either leveraging general hardware (SIMD feature provided by CPUs) or relying on completely specific hardware (FPGA-
based circuits). However, it is not easy for these accelerators to achieve ideal performance. In the following part, we will
first summarize the challenges of accelerating polynomial computation (specifically, its core operation: NTT/FFT) into
three aspects: high computation complexity, extremely intensive memory access and limited generality. Second, we will
further demonstrate the challenges of accelerating key-switching and bootstrapping. Although these two operations are
built upon polynomials operations, designing an end-to-end acceleration solution for them is more challenging in terms
of the aforementioned three aspects, which makes it increasingly more difficult to design efficient FHE accelerators.

4.1 Challenges of Accelerating Polynomial Computation

One widely-adopted algorithm-level optimization for polynomial computation is to leverage Fast Fourier Trans-
form (FFT)/Number Theoretic Transform (NTT) [17, 19]. Thus, accelerating FFT/NTT is essential to all FHE accelerators.
In the following part, we will present the three challenges of further accelerating FFT/NTT with the current hardware
architecture.

4.1.1 High Computation Complexity Although FFT/NTT has lowered the computation complexity of polynomial
multiplications to 𝑂 (𝑛 log𝑛), this operation still takes the majority of the time, reaching 70% in some scenarios [63].
Therefore, to further accelerate the FFT/NTT, people begin to design accelerators to further improve performance.

Most FFT/NTT implementations are constructed by iteratively executing a basic operation called butterfly. The most
well-known butterfly strategies are Cooley-Tukey (CT) butterfly [40] (shown in Figure 2) and Gentlemen-Sande (GS)
butterfly [53] (shown in Figure 3). These two strategies mainly consist of addition, subtraction and multiplication
operations. CT butterfly is designed to execute the Equation 8 and 10 in Appendix A by reusing the multiplication
result. GS butterfly exploits a similar structure and can be used as the reverse operation of CT butterfly in applications.

Based on the butterfly strategies, the FFT/NTT algorithm is divided into log𝑛 stages with 𝑛/2 butterflies in each
stage, as shown in Figure 4, which presents an example of FFT with 𝑛 = 8. The input of the butterflies in FFT/NTT is
the output of specific ones in the previous stage, which leads to a strict dependency chain from the first to the last stage.
Data dependency among butterflies in adjacent stages continuously changes as the calculation proceeds.
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To accelerate FFT/NTT computation, the first attempt is to leverage data parallelism since data parallelism is widely
supported by general hardware, such as CPU (through SIMD instructions) and GPU (through CUDA programming).
However, data parallelism is only efficient when there are no dependencies among all pieces of data. Consequently, the
data parallelism cannot be directly applied to FFT/NTT due to the strict data dependencies among adjacent butterfly
operations.

Another accelerating approach is to utilize pipeline parallelism, which can be implemented by designing customized
hardware circuits via FPGA or ASIC. However, as Figure 4 indicates, to build a pipeline with large 𝑛, (𝑛 log𝑛)/2 separate
butterflies should be implemented, which will consume too many hardware resources, causing either impossible circuits
placement with FPGA or extremely expensive costs with ASIC. Moreover, data movement within such a large pipeline
is almost impossible with state-of-the-art hardware technologies.

Therefore, naive data and pipeline parallelism are challenging. There are two possible solutions. First, it is possible to
make FFT/NTT partly parallelizable based on the 4-step FFT/NTT algorithm [27]. Readers may refer to the Appendix B
for a detailed introduction to 4-step FFT/NTT. The second solution is inter-polynomial parallelism, executing operations
over multiple polynomials concurrently with sufficient hardware resources. The scheme is called residue-polynomial-
level parallelism (rPLP), and we will discuss it in detail in §4.2.

4.1.2 Intensive Memory Access Recent works have observed that overhead in memory access has become an essential
bottleneck even if the accelerator is designed with modern hardware, such as FPGA or ASIC [63, 65, 81, 82]. For example,
let’s consider a chip operating at 1GHz and there’re 40960 on-chip modular multiplication units. The chip is connected
to the latest HBM3 with a bandwidth of 3TB/s. Assume that the chip is executing CoeffToSlot with bootstrappable
parameters (𝑛 = 216, 𝐿 = 23, dnum = 4). All the calculation units are concurrently working and the bandwidth of
the HBM3 is fully utilized. It only takes the chip 0.18ms to finish all the multiplications, while it takes the HBM3
2.1ms (11.7× of computation time) to load the data used in CoeffToSlot [63].

The root cause of the problem is data inflation. Compared to plaintext computation, data size in polynomial operations
largely increases for the following reasons.

In FFT/NTT, a group of pre-computed parameters called twiddle factors is mandatory for the calculations, i.e., 𝜔𝑘
𝑛 in

Figure 2 and Figure 3. Because the twiddle factors can be reused throughout an entire FHE job, it is usually cached in
the on-chip memory (fast but extremely limited) of the accelerator to achieve high performance. For FFT, the number
of twiddle factors is less than the number of input coefficients. However, for NTT, one group of twiddle factors is
required for each modulus in RNS, which results in data inflation. In addition to the twiddle factors, the temporary
results generated by each stage in FFT/NTT also place a high demand on the memory size.

As mentioned in §4.1.1, the 4-step FFT/NTT algorithm makes it possible to process a single FFT or NTT in parallel.
Therefore, it is common to leverage this algorithm in recent designs. However, the 4-step FFT/NTT requires more
pre-computed parameters than the original FFT/NTT algorithm (shown in Appendix B.2). Although the algorithm
greatly reduces the number of twiddle factors, it introduces 𝑛 additional pre-computed numbers called twisting factors
for each RNS modulus [27]. Therefore, the memory space requirement for pre-computed numbers is even more strict
after applying the algorithm optimization.

Furthermore, due to the complex data dependency and large data size, read/write requests over the same block of
memory from different butterflies are common. Such conflicts cause either large design complexity or severe performance
degradation.
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4.1.3 Limited Generality Degree 𝑛 of the polynomials are variant in different scenarios. For example, 𝑛 is related to
security level and multiplicative depth. However, it is challenging for these specific-designed hardware accelerators,
such as FPGA and ASIC, to consistently provide optimal acceleration when 𝑛 varies. The reason is as follows. There are
(𝑛 log𝑛)/2 butterflies in the entire FFT/NTT pipeline. When 𝑛 becomes larger, the consumption of hardware resources
greatly increases. Furthermore, different 𝑛 leads to completely different data dependencies in FFT/NTT. Static circuit
connections among butterflies cannot satisfy the requirement.

If we use a fixed𝑛 to design the pipeline, the design suffers from resource underutilization or non-optimal performance.
For example, when an architecture designed for a certain degree is directly applied to accelerate FFT/NTT with a
relatively larger degree, the calculation fails to achieve full pipelining because of insufficient multipliers. In contrast,
adapting the design to scenarios where the degree is relatively smaller results in a tremendous waste of computing
resources in the redundant stages.

4.2 Challenges of Accelerating Key-switching

As mentioned in §3.3, key-switching is widely used for ciphertext conversion in homomorphic multiplication and
permutation. The main challenge of accelerating key-switching is achieving generality, which we will demonstrate in
detail in the following parts.

The key-switching algorithms used in state-of-the-art accelerators can be considered as different variants of the same
algorithm, i.e., generalized key-switching[54, 60]. Based on RNS decomposition, the modulus 𝑄 is factorized into 𝐿 + 1
coprime moduli 𝑞0, 𝑞1, . . . , and 𝑞𝐿 . In generalized key-switching, given a fixed integer parameter dnum ∈ [1, 𝐿 + 1]
which stands for decomposition number, the moduli are grouped into dnum blocks and the partial production of moduli
in each block is denoted as 𝑄 𝑗 =

∏( 𝑗+1)𝛼−1
𝑖=𝑗𝛼

𝑞𝑖 , where 𝑗 ∈ [0, dnum) and 𝛼 = ⌊(𝐿 + 1)/dnum⌋. Then the key-switching
can be decomposed into calculations in each block, followed by the accumulation of results from different blocks. Each
block’s calculations are also called fast basis conversion, mainly consisting of multiplications and additions, while
the major operation in accumulation is NTT. The selection of dnum greatly impacts the memory requirement and
calculation complexity of key-switching. As dnum increases from 1 to 𝐿 + 1, the overall memory consumption in
key-switching and the workload for NTT strictly grows, while the workload for basis conversion decreases. The overall
calculation workload also depends on the selection of other parameters, especially multiplicative depth 𝐿. Therefore,
different dnums are suitable for various scenarios.

The variation of dnum poses generality challenges to the accelerators, especially for those with specific-designed
circuits due to the high complexity of changing them. Since the proportion of different operations in the total workload
is not static, the first challenge for the designers is to decide how to distribute the limited resources in the accelerator to
different calculation units (i.e., NTT and basis conversion) to achieve balanced throughput for all the typical applications.

The second generality problem is how to decide the parallelism scheme. Since NTT and fast basis conversion require
different schemes to be efficient, for the accelerators, how to parallel process polynomials is impacted by the relative
workload of NTT and basis conversion, which is relevant to dnum. The parallelism schemes adopted by existing
works can be categorized into rPLP (residue-polynomial-level parallelism) and CLP (coefficient-level parallelism), two
different polynomial access patterns for the accelerators to achieve high parallelism. Under RNS representation (§2.3),
we need to perform concurrent operations on multiple residue polynomials. With rPLP, each processor in the accelerator
individually executes operations over a single residue polynomial. The parallelism is achieved by distributing multiple
residue polynomials to different processors. With CLP, multiple processors in the accelerator collaboratively execute
operations for a single residue polynomial, and 𝑛 coefficients in the same polynomial are distributed to different
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processors. There is no superior or inferior of these two schemes in terms of coefficient-wise operations like polynomial
addition and dyadic multiplication. However, CLP introduces global data communication across different processors for
NTT. Similarly, rPLP leads to extra data exchange in basis conversion. Therefore, both schemes may cause performance
degradation in certain operations.

In key-switching, both basis conversion and NTT are dominant. The designer may compare the relative workload of
basis conversion and NTT in the targeted applications to choose between CLP and rPLP. For example, when a relatively
smaller dnum is chosen, which increases the importance of basis conversion, CLP is a preferred choice. Nevertheless,
generality remains to be a challenge.

4.3 Challenges of Accelerating Bootstrapping

In this section, we mainly analyze bootstrapping in word-wise FHE since it is more complicated than that in bit-wise
FHE (details in §3.3), and is the focus of the latest FHE accelerators [63, 65, 82]. Bootstrapping in word-wise FHE consists
of four complicated steps, making it the most time-consuming operation in word-wise FHE. The impressive overhead
comes from the large consumption of multiplicative depth and enormous homomorphic permutations, which both lead
to extremely high computation complexity and memory access.

Large Consumption of Multiplicative Depth: As reported in [82], bootstrapping in the LSTM benchmark consumes
61% of the maximum multiplicative depth (35 out of 57 levels). The significant consumption of multiplicative depth
mainly comes from the approximation schemes applied in bootstrapping, which include deep calculations.

Therefore, for FHE applications requiring unbounded multiplication depth, such as deep learning training, the
maximum multiplicative depth 𝐿 must be large enough to support bootstrapping. Furthermore, since bootstrapping
involves dramatic overhead, we should further increase depth 𝐿 to use more multiplicative depth to perform application
computations before bootstrapping, thus reducing the frequency of bootstrapping during the whole calculation to
guarantee the effectiveness of an application.

Consequently, the growth of depth 𝐿 leads to a larger modulus 𝑄 , and the degree of polynomial 𝑛 should be raised
accordingly to reach a certain security level of RLWE [24]. Large modulus and degree of polynomial lead to the
growing size of ciphertexts and keys, thus significantly increasing the workload of polynomial calculations and memory
consumption.

EnormousHomomorphic Permutations: The second and fourth steps of bootstrapping, CoeffToSlot and SlotToCoeff,
suffer from the high computational overhead of homomorphic operations, especially when the plaintext messages
are densely packed in the ciphertext. In the implementation of [34], CoeffToSlot on a ciphertext, which packs 4096
plaintext messages, requires ∼ 30 homomorphic permutations, leading to large computation complexity. Moreover,
homomorphic permutations introduce massive additional switching keys, dramatically inflating the memory space
needed and increasing the bandwidth requirements. In detail, the size of a single switching key is about dnum× the
size of a ciphertext, and permutations aiming at different rotation steps need distinct keys, which introduce ignorable
memory storage and access overhead. For example, according to the analysis in [63], with 𝑛 = 215, 40 different switching
keys should be pre-computed and stored in preparation for permutations in the linear transformation of bootstrapping.

5 FHE Accelerators

In this section, we will first comprehensively review the existing FHE accelerators in chronological order (§5.1). Then
we briefly introduce how existing FHE software support these accelerators (§5.2). Finally, we will summarize their
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Name Hardware
Target

Software/Hardware
Co-design

Polynomial
Parallelism

Supported Schemes Supported Features Open-
sourceBFV CKKS TFHE Programmable Bootstrappable

cuHE [1] GPU rPLP
cuFHE [4] GPU rPLP
nuFHE [5] GPU rPLP
HEAT [80] FPGA rPLP
HEAX [78] FPGA rPLP
HEXL [28] CPU rPLP
HEXL-FPGA [11] FPGA rPLP
100× [62] GPU rPLP + CLP
F1 [81] ASIC rPLP
CraterLake [82] ASIC CLP
BTS [65] ASIC CLP
ARK [63] ASIC rPLP + CLP
Poseidon [88] FPGA CLP
FAB [23] FPGA CLP
TensorFHE [51] GPU rPLP

Table 2. Overview of all FHE accelerators (in chronological order).

evolution trajectory to address particular challenges mentioned in the previous section, which establishes a qualitative
connection among them (§5.3).

Table 2 provides an overview of FHE accelerators by demonstrating the hardware leveraged, the data parallelism
schemes used, and the features of these FHE accelerators. We also make the following explanations to make it clear. First,
the software/hardware co-design denotes whether the design leverages software’s flexibility and hardware’s efficiency
to properly distribute and schedule the workload in the accelerator. In particular, we regard co-design is absent in all
CPU-based and GPU-based works, which only include software design based on off-the-shelf hardware architectures.
Second, similar to previous works [86], the FHE schemes are grouped into families of related schemes. For example,
BFV stands for BFV [50]/BGV [32] and TFHE stands for TFHE [39]/GSW [55]. Third, among the different features of
the accelerators, we mainly focus on whether they are programmable and bootstrappable. Programmable refers to the
accelerator’s ability to support a variety of cryptographic parameters without hardware architecture reconfiguration.
Bootstrappable means it is possible to execute bootstrapping and achieve unlimited FHE operations with the accelerator.
The half circle ( ) here represents that the accelerator supports bootstrapping, but the performance is far from meeting
practical requirements.

Worth noting, although the FHE accelerators rely on the acceleration of polynomial computations, such as NTT, it is
not reasonable to categorize works that only accelerate these basic modules as FHE accelerators. For example, FFT
accelerators are commonly applied in other fields, such as signal processing, but most of them cannot be directly used
to boost the performance of FHE schemes. Our survey will not cover them but focus on accelerators that explicitly
improve the efficiency of FHE schemes.

5.1 Survey of Existing FHE Accelerators

For all the FHE accelerators, the common building block is the FFT/NTT module, as it is the bottleneck of polynomial
calculations and directly determines the performance. We need to point out that most existing accelerators (except for
the GPU-based design nuFHE [5]) do not implement both FFT and NTT computations since FFT contains floating-point
operations, while NTT only includes integer operations. They require completely different hardware circuits for
acceleration. Therefore, to simplify the design complexity and reduce the hardware resource overhead, the accelerator
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designers usually accelerate one of FFT and NTT, and therefore can only support FHE algorithms using the corresponding
operations, as we listed in Table 2.

By connecting the FFT/NTT module with other computation units with optimized data paths, the accelerators can
finish their target FHE jobs. Different works have variant designs for FFT/NTT modules and data paths, targeting their
acceleration goals. For earlier works, since their computation scenarios are limited, they usually have fixed designs for
NTT/FFT computation units and fixed calculation workflow to reduce design complexity. As the application scenarios
continue to increase, later works tend to design programmable NTT/FFT units and data paths to support different
parameter settings and various applications. Moreover, later works find it is important to introduce more on-chip
memory spaces with customized devices, as the memory of general hardware like GPU and FPGA becomes insufficient
because the FHE applications become more complicated and require more calculations. As a result, Application-Specific
Integrated Circuit (ASIC) becomes a preferred choice for designers who can afford it.

5.1.1 cuHE/cuFHE CUDA Homomorphic Encryption Library (cuHE) was proposed by Dai et al. in 2015 [1, 45]. cuHE
uses GPU for acceleration and provides CUDA implementation of NTT and CRT. CUDA-accelerated Fully Homomorphic
Encryption Library (cuFHE) was proposed by Dai et al. in 2018 [4]. cuFHE leverages implementations of cuHE to boost
the performance of TFHE [39]. Both cuHE and cuFHE are open-sourced standalone acceleration libraries [1, 4] and do
not provide official integration with FHE libraries. However, they only support accelerating polynomial operations
with NTT, while an FFT-based implementation may achieve higher performance for TFHE. Moreover, besides limited
functions, cuFHE adopts fixed cryptographic parameters, which cannot be configured to achieve high generality.

5.1.2 nuFHE GPU-powered Torus FHE implementation (nuFHE) was launched by NuCypher in 2018 [5]. Similar to
cuHE/cuFHE, nuFHE also adopts GPU to accelerate FHE schemes. However, different from them, nuFHE provides
either FFT or NTT to improve performance. nuFHE is an open-source standalone library [5] and provides Python APIs.
With FFT, nuFHE achieves better performance compared with cuFHE. But it shares the similar disadvantage of limited
generality.

5.1.3 HEAT HEAT was proposed by Roy et al. in 2019 [80]. Different from cuHE, cuFHE, nuFHE, HEAT targets
accelerating a word-wise FHE scheme: BFV. Moreover, besides general hardware which has been used in previous
works, HEAT further leverages FPGA to achieve a more flexible hardware design. Thus, HEAT utilized a heterogeneous
ARM-FPGA co-designed architecture implemented on Xilinx ZCU102 Evaluation Kit [7]. The authors further migrated
HEAT to the f1 instance of Amazon AWS in 2020 [85]. Both implementations are open-sourced. The implementation of
HEAT on ZCU102 comprises several hardware coprocessors on FPGA and a multi-core (4 cores) ARM processor. The
parallel coprocessors can efficiently execute primitive operations in BFV, including addition, subtraction, multiplication,
modulus switching, and NTT. The ARM cores control the coprocessors’ workflow and manage the network connection
to the applications. By using the software as a workflow controller, HEAT can perform polynomial arithmetics and
homomorphic operations like key-switching in BFV by combining different primitive operation units.

Considering the limited on-chip memory (BRAM/URAM) and calculation units (DSP), it is impossible to implement
a fully pipelined NTT processor on FPGA. Instead, the authors instantiated two CT butterfly units for each NTT
core and accomplished the NTT by reusing them. This design is a compromise solution due to limited resources,
thus inevitably leading to non-optimal performance. Another problem caused by resource constraints is the relatively
smaller polynomial degree. The polynomial degree supported by HEAT is 4096, which does not fulfill most practical
requirements and significantly limits its generality.
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5.1.4 HEAX HEAX was proposed by Microsoft in 2020 [78]. It provides a highly performant hardware architecture to
accelerate the operations of CKKS. HEAX is not an open-source project. The acceleration foundations of HEAX are the
primitive modules: NTT and multiplication modules. Each module consists of multiple calculation cores, which could
be adjusted to match the required throughput.

Different from HEAT, which depends on the software to manipulate hardware primitive operations (e.g., NTT and
multiplication) when implementing key-switching, HEAX implements a specific key-switching module to minimize the
overhead of software and hardware interaction. Following the workflow of key-switching, the key-switching module
instantiates multiple primitive modules and BRAMs to construct the pipeline. The modules can be adjusted to balance
the throughput in the pipeline based on specific cryptographic parameters.

However, the adjustment of HEAX is accomplished by physically modifying the modules. The FPGA has to be
reconfigured to adapt to different cryptographic parameters, which limits the generality of the design.

5.1.5 HEXL Unlike previous works relying on specific hardware devices, such as GPU and FPGA, Intel proposed Intel
Homomorphic Encryption Acceleration Library (HEXL) in 2021 [28]. HEXL exploits the SIMD features provided by Intel
CPUs, which are easily accessible, to provide plug-and-play acceleration capacities for FHE. HEXL has been integrated
with PALISADE [19], Microsoft SEAL [17] and HElib [14] by replacing the underlying arithmetic implementations. It is
open-sourced, and the code is hosted on Github [16].

With the single-threaded implementation of primitive operations, including NTT/iNTT and dyadic multiplication,
based on the Intel AVX-512/AVX512IFMA instructions [10], HEXL reaches high single-core acceleration. Since HEXL is
thread-safe, users can achieve better performance by paralleling different operations with multi-threading. However,
due to architecture deficiency, the overall performance largely degrades when there are many threads. For example, too
many threads with SIMD cause significant heat dissipation. As a result, core frequency is dramatically reduced when
reaching the TDP [57]. Moreover, similar to the CPU-based acceleration libraries in other domains, HEXL also suffers
from slow memory access, further reducing its overall performance.

5.1.6 HEXL-FPGA To compensate for the disadvantages of HEXL, Intel further proposed HEXL-FPGA in 2021 [11].
HEXL-FPGAoffers theHLS-based (high level synthesis) implementation of NTT/iNTT,multiplication, and key-switching.
Since HEXL-FPGA is open-sourced, users can compile each of the functions into an individual bitstream and program
the FPGA device. HEXL-FPGA can be integrated with aforementioned HEXL to accelerate corresponding FHE libraries.
HEXL-FPGA is open-sourced and under active development [11].

However, there are inherent problems with HLS-based solutions. HLS designs are written in high-level language
and rely on the compiler to convert the codes into hardware design. Due to the essential difference between the
hardware and software, the compiling process may lead to redundant resource consumption and complex workflow
synchronization [26], thus leading to suboptimal performance. Therefore, it’s hard for HEXL-FPGA to fully utilize the
advantages of FPGA. Moreover, HEXL-FPGA only supports a limited range of cryptographic parameters, which will be
demonstrated in §6.2.

5.1.7 100× 100× was proposed by Jung et al. in 2021[62]. It provides higher acceleration of CKKS than previous works
(i.e., HEXL-FPGA and HEAX) with the powerful V100 GPU [3]. The reason is that V100 has more hardware resources
due to better semiconductor manufacturing processes and works at a much higher frequency than the FPGAs adopted
in previous works. 100× introduces memory-centric optimizations to increase end-to-end performance and achieves
over 100× acceleration ratio compared to the single-thread CPU implementation.
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The implementation of NTT in 100× is built based on the hierarchical approach in [64]. Its basic idea follows the
4-step FFT/NTT algorithm [27]. The implementation of NTT is divided into two separate kernels, making it possible to
cache all input data in the shared memory. Moreover, due to the limited size of registers in GPU, both kernels further
decompose the NTT based on a generalized version of the 4-step FFT/NTT algorithm. In addition to the decomposition,
schemes including coalesced memory access and on-the-fly twiddle factors generation are leveraged to decrease the
overhead in memory access.

However, although the memory accesses in the basic operations have been optimized, the end-to-end performance
of a FHE task is still bottlenecked by the bandwidth of the main memory. To relieve the bottleneck, the authors of 100×
tend to fuse multiple kernels into a single kernel, which allows the data cached on the chip to be reused by a series
of consecutive operations and reduces global memory accesses. Nevertheless, since GPU’s architecture is designed
for calculations between small numbers (e.g., FP16), it does not offer large on-chip memory. As a result, the intensive
memory access still degrades the performance of 100×.

5.1.8 F1 To solve the problems of insufficient resources (e.g., the FPGA-based ones) and unsuitable fixed architec-
ture (e.g., the CPU or GPU-based ones), recent works have shifted to explore the potential of application-specific
integrated circuits (ASICs). Following this trend, F1 was proposed by Feldmann et al. in 2021 [81]. To pursue more prac-
tical acceleration for FHE schemes, F1 is the first programmable FHE accelerator with a dedicated architecture, which
denotes it can support several FHE schemes with a large range of cryptographic parameters. F1 is not open-sourced.

At its core, F1 implements 16 computation clusters, each containing several primitive function units (FU), including
NTT, modular multiplication, modular addition, and automorphism. Different units can compose high-level FHE
operations such as key-switching. All the FUs are pipelined and vectorized to process 128 elements in each cycle.
Therefore, polynomials with degrees that are multiples of 128 can be handled by sequentially feeding the operands to the
pipeline. Specifically, to implement NTTwith the 128-element processor, F1 leverages the 4-step FFT/NTT algorithm [27]
to decompose a NTT into multiple vectorized operations with much fewer input elements. F1 tries to minimize data
movement overhead by proposing a hierarchical storage system. The off-chip high-bandwidth memory (HBM) is the
global memory that directly interacts with the CPU server. A 64MB scratchpad built on 16 banks of SRAM is designed
as the on-chip cache and fetches data from HBM. The computation clusters communicate with the scratchpad and store
the data used for the current operation in the limited vector registers. The communication between the scratchpad and
clusters depends on a complex fully connected network (three 16 × 16 crossbars).

The design of F1 has three main problems. First, the performance of F1 highly relies on sufficient parallelism among
16 clusters and efficient data movement in the accelerator, which places a high demand on the software compiler
for operation scheduling. Considering that FHE computations vary significantly in terms of different workflows and
different parameter settings, the compiler is complicated. However, F1 does not provide many details about its compiler.
The second problem is that F1 uses a fixed key-switching algorithm (generalized key-switching with dnum = 𝐿 + 1). If
the multiplicative depth 𝐿 of ciphertexts is high, key-switching is extremely slow. Last, F1 only supports non-packed
bootstrapping [36], which only works for ciphertext with a single number packed in the polynomial and is far from
practical in real-world applications. The reason is that the maximum degree of polynomial that F1 supports via the
4-step FFT/NTT algorithm is 16384, which is too small for F1 to execute fully packed bootstrapping [30] under 80-bit or
128-bit security level of RLWE. Without efficient bootstrapping, F1 struggles to evaluate deep arithmetic functions.

5.1.9 CraterLake CraterLake was proposed by Samardzic et al. in 2022 [82]. It is not an open-source project. CraterLake
is a follow-up to F1 and targets unbounded-depth homomorphic multiplications. Consequently, CraterLake uses the fully
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packed bootstrapping [30] to refresh the multiplicative depth of ciphertexts. To balance the frequency of bootstrapping
and the size of ciphertexts, the authors of CraterLake chose the number of multipliers required per homomorphic
multiplication as the criterion to evaluate the overall computational complexity of an FHE program. Moreover, the
authors followed the idea of the vectorized unit in F1 and logically designed the whole accelerator as a single 2048-
element vectorized processor to handle the large ciphertext, which requires the maximum degree of polynomial and
multiplicative depth to be 65536 and 60 respectively. However, such a design can not be naively implemented on ASIC
considering the complex combinational and sequential logic circuits. Thus, in CraterLake, the 2048-element processor
is physically composed of eight 256-element groups.

Similar to F1 [81], CraterLake implements several functional units (FU) in each 256-element group. The difference is
the two additional FUs in CraterLake, i.e., Change-RNS-base (CRB) and switching key generator (KSHGen), and both
units are introduced to further optimize key-switching. The CRB unit, which mainly executes modular multiplication
and modular summation, is specifically designed to accelerate fast basis conversion when dnum is relatively small
(e.g., dnum = 1). To save additional memory space, the KSHGen unit generates switching keys on the fly, which were
pre-computed and cached in the device memory in previous works, such as F1 [81] and HEAX [78].

Another major difference between CraterLake and previous works is that CraterLake adopts CLP as the data
parallelism scheme rather than rPLP due to the increasing workload of fast basis conversion. With the CLP scheme,
CraterLake only processes one polynomial operation simultaneously, and the coefficients of polynomials are distributed
to the 256-element groups with a static distribution strategy, leading to three significant advantages. First, as a particular
coefficient can only be assigned to a specific group, the complex 16 × 16 crossbar in F1, which deals with the dynamic
data exchange between on-chip scratchpad and groups, is no longer required. Data movement caused by operations
among different polynomials can be eliminated as well. Second, the parallelism of CraterLake is not influenced by the
varying multiplicative depth or numbers of concurrent operations, which maintains the performance throughout an
entire FHE program and simplifies the software scheduler.

Although CraterLake is programmable enough to support different cryptographic parameters, the FUs, especially
NTT units, may face functionality limitations or resource underutilization because of the static pipelined circuit, as we
mentioned in §4.1.3. The computation resources in CraterLake can be fully utilized if and only if 𝑛 = 65536, which is a
common problem for works containing a pipelined NTT circuit (e.g., F1 and ARK). Besides, in CraterLake, the CRB unit
occupies 34% on-chip area, reducing the performance of other operations, like NTT. Therefore, in the scenarios where
larger dnum is optimal, the CRB units are underutilized and CraterLake cannot deliver sufficient acceleration.

5.1.10 BTS BTS was proposed by Kim et al. in 2022 [65]. It is a follow-up to 100× and shares similar design goals with
CraterLake, i.e., a bootstrappable and programmable hardware architecture for word-wise FHE.

Because of the similar goal, many optimization approaches in BTS are close to those in CraterLake, including the
basis conversion unit, CLP parallelism scheme and on-the-fly data generation. The most significant difference between
CraterLake and BTS is the pattern in which they place basic functional units, thus leading to different implementations
of basic operations. The architecture of BTS is close to that of modern GPUs, consisting of a 64 × 32 two-dimensional
(2D) array of processing elements (PE). Each PE comprises a basis conversion unit and a 2-point NTT/iNTT unit (i.e., a
single butterfly unit). The 2048 PEs are interconnected via vertical and horizontal crossbars. An example of 131072-point
NTT with the architecture works as follows. First, each PE performs a 64-point NTT independently. Second, 64 PEs in
the same row perform a 64-point NTT with data synchronization through horizontal crossbars. Third, 32 PEs in the
same column perform a 32-point NTT with data synchronization through vertical crossbars. This process generalized

16



the 4-step FFT/NTT algorithm. Each PE plays a similar role to the GPU threads, and the crossbars accomplish thread
synchronization. To facilitate the unique computational pattern, the authors placed multiple smaller local scratchpads
in each PE instead of putting a large global one that communicates with all the PEs. The local scratchpad is directly
connected with HBM and eliminates additional overhead from the hierarchical data distribution.

However, a potential drawback of BTS is that the 2D array structure cannot execute NTT with a fully pipelined
workflow. As mentioned before, NTT operation in BTS consists of three sequential steps and all the PEs are involved in
each step. Therefore, no pipeline parallelism can be achieved if multiple NTT operations should be processed, which
may decrease the end-to-end performance. Similar to F1 and CraterLake , BTS is not open-sourced.

5.1.11 ARK ARK was proposed by Kim et al. in 2022 [63]. It consists of four vectorized processing clusters, similar to
the 256-element groups of CraterLake. Each cluster contains several primary operation units. Different from previous
works that target accelerating bootstrapping only from hardware angle [65, 82], ARK is the first work that analyzes and
modifies the bootstrapping algorithm, thus achieving an algorithm and hardware co-design to optimize the accelerator’s
performance. Specifically, the authors proposed multi-hop homomorphic rotation and on-the-fly residue extension to
significantly reduce the size of switching keys and plaintexts used in bootstrapping, respectively, which lowers the
difficulties in hardware design.

As mentioned earlier in this section, the workload of basis conversion is heavy in bootstrapping, making CLP
a preferred parallelism scheme for bootstrappable accelerators like CraterLake and BTS. But CLP also introduces
communication overhead in NTT. According to ARK, NTT and basis conversion separately take up 54.8% and 34.2%
of the overall computational workload given practical bootstrappable parameters. Since both functions are crucial to
end-to-end performance, ARK leverages both schemes, i.e., CLP for basis conversion and rPLP for the other operations
including NTT. A switching mechanism between the two data distribution patterns is also used by ARK, especially for
functions that contain both NTT and basis conversion, such as key-switching. In ARK’s paper, this hybrid parallelism is
proven more efficient than rPLP, but whether it is better than CLP is not discussed.

5.1.12 Poseidon Poseidon was proposed by Yang et al. in 2023 to design a FPGA-based FHE accelerator that could
support bootstrapping [88]. Compared to previous FPGA-based accelerators, Poseidon leverages several optimization
operations, such as radix-based NTT, optimized automorphism, etc., to improve the resource efficiency of its imple-
mentation. Furthermore, Poseidon utilizes a more modern FPGA, U280 [21], with high-bandwidth memory (HBM) [9]
support. Therefore, Poseidon manages to implement the complicated bootstrapping algorithm on FPGA. However,
Poseidon should still suffer the limitations of aforementioned FPGA-based solutions.

5.1.13 FAB FAB was proposed by Agrawal et al. in 2023 [23]. Similar to Poseidon [88], FAB is a FPGA-based FHE
accelerator that can support bootstrapping [23]. FAB optimizes the on-chip memory access based on the workflow of
bootstrapping algorithm, to eliminate the bottleneck caused by memory access. Similar to Poseidon [88], FAB also uses
U280 [21] FPGA with HBM support.

5.1.14 TensorFHE TensorFHE was proposed by Fan et al. in 2023. By transforming NTT into multiple sequential
general matrix multiplications, TensorFHE can use the Tensor Core Units (TCU) [56] in modern GPUs to accelerate
the NTT computation [51]. The core idea of TensorFHE is to leverage fine-grained operation batching to utilize the
data parallelism features provided by a GPU. With state-of-the-art GPUs, such as V100 [3] and A100 [12], the authors
claim that TensorFHE can outperform other accelerators implemented with CPU, GPU and FPGA. TensorFHE could
achieve comparable performance as F1 [81] in some scenarios, due to the latest semi-conduct technologies adopted by
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these modern GPUs. TensorFHE should still suffer from the aforementioned non-optimal acceleration due to GPU’s
architectural deficiency.

5.2 Upper-layer Software Support

To effectively utilize the accelerators mentioned above, proper upper-layer software support is crucial. However,
integrating FHE software with these accelerators poses significant challenges. One key obstacle is the need to establish
a well-defined and unified interface that accommodates different FHE accelerators, each utilizing distinct data structures
for input/output and requiring diverse workflows. Addressing this challenge is signifant to the research community, as
achieving transparency of FHE accelerators to upper-layer software is essential for practical real-world deployment.

A promising advancement towards solving this problem is the OpenFHE project [25]. OpenFHE is an open-source
project that offers efficient and extensible implementations of the latest FHE schemes. Notably, OpenFHE introduces a
hardware abstraction layer (HAL) designed to support CPU, GPU, FPGA, and ASIC-based FHE accelerators. The HAL
provides C++ abstract classes that enable accelerators to implement their own backend logic. These classes encompass
essential mathematical operations (such as NTT, iNTT, vector addition, etc.) and lattice/polynomial layer functionalities
(including RNS subroutines). It is worth mentioning that OpenFHE already includes a hardware backend implementation
for HEXL [18, 28].

By addressing the interface and compatibility challenges and offering a flexible HAL, OpenFHE empowers researchers
and developers in the FHE community to seamlessly integrate diverse FHE accelerators into their upper-layer soft-
ware solutions. We believe that this advancement will shed light on bridging the gap between FHE applications and
accelerators.

5.3 Observations on Evolution of Existing Works

Based on the above survey, we make the following observations on the evolution of existing FHE accelerators and the
underlying connection among them. We also illustrate how they address particular challenges mentioned in §4.

From General Hardware to Application-Specific Integrated Circuit: Most latest FHE accelerators choose
Application-Specific Integrated Circuit (ASIC) as their hardware platform for two reasons. First, general-purpose
hardware, such as CPU and GPU, suffer from fixed architecture and limited on-chip memory, which fail to address the
challenges mentioned in §4. Second, FPGA suffers from relatively limited programmable resources and low operational
frequency, which restricts it from reaching high performance. Although some latest FHE accelerators still utilize FPGA
or GPU in their design [23, 51, 88], they still suffer the mentioned limitations, thus leading to suboptimal performance.

The advantage of applying ASICs to FHE accelerators is that designers can optimize the hardware architecture
with high flexibility and utilize state-of-the-art technologies of the computer architecture community according to the
requirement of FHE computations. Recent ASIC-based works adopt specially designed architecture, such as crossbars,
to enable complex polynomial operations described in §4.1.1. They also use high-speed memory, including HBM and
SRAM, to accelerate the intensive memory access mentioned in §4.1.2 and §4.3. While promising, this design choice
also introduces several problems: 1) most modern ASIC-based FHE accelerators are expensive to produce, especially
when the chip size is up to hundreds of square millimeters, e.g., a 14nm ASIC of 100mm2 requires millions of US dollars
to tape out; 2) most of these ASIC-based solutions are not open-sourced due to reasons such as IP restrictions, making
them difficult to reproduce, thus undesirable for the research community.
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Software/Hardware Co-design: Early FHE accelerators perform certain simple operations, such as NTT, after
receiving a single instruction from upper-layer software without any instruction scheduling [78, 80]. Since these
operations follow the static hardware workflow, which cannot be dynamically adapted, the accelerators suffer from
limited generality (§4.1.3). Moreover, when accelerating an end-to-end application containing massive high-level
operations such as bootstrapping (§4.3), the overhead of frequent interactions between software and hardware cannot
be ignored.

To overcome these problems, recent FHE accelerators adopt software/hardware co-designed approaches. Specifically,
they first leverage hardware-friendly algorithms to divide the hardware resources into multiple computation clusters
which can be independently scheduled [63, 65, 81, 82]. Furthermore, the designers can make extensive use of the
software’s flexibility to apply adaptations according to the specific application to efficiently support complicated
end-to-end applications.

However, the current software design of FHE accelerators fails to leverage knowledge from some of the latest
techniques, e.g., various FHE compilers [38, 46]. We identify it as a potential future direction in §7.3.

Enhanced Programmability: Programmability, i.e., supporting different cryptographic parameters without hardware
architecture reconfiguration, is not achieved in most of the early works due to the following two reasons. First, early
works rarely focus on end-to-end acceleration for real-world applications. Thus, they do not have such a need. Second,
programmability is not easy to achieve, considering the complexity of FFT/NTT.

Recent FHE accelerators have begun to adopt the 4-step FFT/NTT algorithm not only to increase parallelism but
also to improve the architecture’s programmability to handle different parameters, specifically various 𝑛. Readers
may refer to Appendix B.2 for more details. The improved programmability alleviates the generality limitation in
polynomial computations described in §4.1.3, although the problems are not eradicated. Currently, an unresolved issue
is the generality challenge in key-switching (§4.2). Recent works focusing on deep calculations show unoptimized
performance in shallow tasks. As described in [82], in shallow benchmarks without bootstrapping (𝐿 is between 4 and
8), CaterLake is slower than F1 due to the underutilization of the basis conversion units that occupy a large proportion
of hardware resources.

Unlimited Depth of Operations: Interestingly, the latest few works (i.e., CraterLake [82], BTS [65], and ARK [63])
show a similar tendency of accelerating bootstrapping to achieve unlimited ’fully’ homomorphic operations. This
common goal leads to the convergence of multiple design choices. First, optimized algorithms, including 4-step FFT/NTT
and generalized key-switching, are preferred because of their advantages in handling large ciphertexts. Recent studies
are willing to allocate a considerable amount of hardware resources to corresponding structures such as global transpose
and fast basis conversion. Second, recent works invest much effort in eliminating the memory access bottleneck. They
tend to reduce the memory overhead at the cost of introducing extra calculations, like on-the-fly generation of essential
parameters. Last but not least, since all these works have emphasized the importance of basis conversion, CLP is
becoming the primary parallelism scheme, contrasting with rPLP in the earlier designs.

6 Evaluation

6.1 Evaluation Methodology

In this section, we provide a quantitative comparison of these existing FHE accelerators. As introduced in §5, some FHE
accelerators are open-sourced. We will use our testbed to reproduce the results of some representative ones. Since these
open-sourced FHE accelerators do not provide direct support for end-to-end algorithms, we mainly evaluate how they
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accelerate the performance of NTT and key-switching. In this paper, we evaluate HEXL, HEXL-FPGA, and 100× as
word-wise FHE schemes. We also evaluate two bit-wise FHE accelerators: cuFHE and nuFHE.

Second, since some latest FHE accelerators are not open-sourced, we will directly use the results from their original
papers. For example, the paper of HEAX and F1 provides its performance of accelerating NTT and key-switching while
TensorFHE also provides its performance of NTT, thus we will align these results with our testbed results. Moreover,
some latest accelerators, such as F1, BTS, ARK, Poseidon, FAB and TensorFHE provide end-to-end performance results
for accelerating real-world applications, we will also include these results in our paper. Specifically, we demonstrate the
performance of two deep applications, i.e., ResNet20 [67] and Logistic Regression [59], and two shallow applications, i.e.,
LoLa-MNIST and LoLa-CIFAR [33]. Deep applications contain many ciphertext multiplications and therefore require
bootstrapping, while shallow applications only include limited multiplications and do not need bootstrapping. For the
detailed settings of the end-to-end tests, we refer the readers to the original papers of the accelerators.

Testbed settings: We use a single X86 server as our testbed. The server is equipped with an Intel(R) Xeon(R) Gold
5115 CPU running at 2.40GHz and 128GB RAM. The CPU supports AVX-512 FMA [10]. The operating system is Ubuntu
18.04.5 LTS. We also use Intel PAC D5005 Acceleration Card with an Intel Stratix 10 GX FPGA [15] to reproduce the
results of HEXL-FPGA. For all accelerators that require the GPU as their target hardware, we use NVIDIA V100 GPU
with 32GB RAM for evaluation [3]. All the experiments are evaluated in a docker environment with the docker version
20.10.21.

6.2 Evaluation Results

NTT/FFT. First, we will evaluate the performance of word-wise FHE accelerators. Figure 5 shows the NTT performance
of HEXL, HEXL-FPGA, 100×, HEAX, F1 and TensorFHE. Please note that the performance of HEXL, HEXL-FPGA and
100× is measured on our testbed, while the performance results of HEAX, F1 and TensorFHE are from their original
paper. We also run SEAL [17] without any accelerators to demonstrate the baseline performance (denoted as No Acc
in the Figure). In this evaluation, we use three settings of 𝑛, i.e., 𝑛 = 4096, 8192, 16384. Similar to HEAX, we set the
bit-width of polynomial coefficients in NTT to 52 for evaluation [78]. But F1 chooses the bit-width of 32 as it is the
largest word size in F1. Theoretically, the performance of F1 should be slightly worse if the bit-width is 52.

We mainly have the following observations. 1) when the FHE accelerators leverage more advanced hardware
technologies, the performance is largely improved. For example, the CPU-based accelerator, HEXL, can only achieve
up to 3.0× acceleration ratio, while ASIC-based accelerators, F1, can achieve up to 20546.9× acceleration ratio. 2)
contradicting our common wisdom, specific-designed hardware-based solutions do not always yield better performance
than general hardware-based ones. For example, HEXL-FPGA and HEAX cannot achieve a better acceleration ratio
over 100× and TensorFHE. The core reason is that HEXL-FPGA and HEAX adopt FPGA as their hardware platform,
which suffers from the aforementioned problems such as limited programmable resources and low working frequency.
Precisely, V100 GPU in our evaluation has the peak performance of ∼ 250 INT8 TOPS with tensor core [3], which is
∼ 10× better than Stratix 10 FPGA [2] used in HEAX and HEXL-FPGA.

Figure 7 shows the performance of NAND gate achieved by cuFHE and nuFHE on our testbed. The NAND gate is
a typical example that includes bootstrapping in bit-wise FHE schemes, such as TFHE. Polynomial multiplication in
TFHE can be accelerated with either NTT or FFT, and we mark the schemes used by different libraries in the Figure. For
the baseline (No Acc), we run the TFHE software libraries [20].
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Fig. 5. Performance of NTT. The performance of HEXL, HEXL-FPGA and 100× is measured on our testbed while the performance
results of HEAX and F1 are from their original paper.
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Fig. 6. Performance of key-switching. The performance of HEXL, HEXL-FPGA and 100× is measured on our testbed while the
performance results of HEAX and F1 are from their original paper. HEXL-FPGA does not support Setting3.

From our evaluation, we can observe that nuFHE and cuFHE can achieve 170.6× and 186.2× acceleration with NTT
implementation, respectively. Moreover, nuFHE also supports using FFT to accelerate the NAND gate, which can
achieve up to 432.0× acceleration.

Key-switching. In our evaluation, we use three settings.
Setting1: 𝑛 = 4096, 𝐿 = 1, log(𝑃 ·𝑄) = 109, dnum = 2,
Setting2: 𝑛 = 8192, 𝐿 = 3, log(𝑃 ·𝑄) = 218, dnum = 4,
Setting3: 𝑛 = 16384, 𝐿 = 7, log(𝑃 ·𝑄) = 438, dnum = 8.
Figure 6 shows the results. We have similar results as previous FFT/NTT experiments. Worth noting, HEXL-FPGA
cannot perform key-switching with the most complicated setting, i.e. setting3, which confirms the potential drawback
as discussed in §5.1.6.

End-to-end deep applications. Figure 8 shows the end-to-end performance over two applications achieved by 6 latest
accelerators, i.e. F1, BTS, ARK, Poseidon, FAB and TensorFHE. Since these solutions are not open-sourced, we use the
results from their original papers. We do not include the results of ResNet20 with F1, 100× and FAB since they are not
presented in the original papers. The results reveal that: 1) As discussed in §5.1.8, in a task requiring large multiplicative
depth, F1 shows critical performance deficiencies despite its significant performance of NTT. For example, it takes F1
1024ms to execute a single iteration of LR, which is even slower than 100× (775ms), Poseidon (73ms), FAB (103ms) and
TensorFHE (222ms); 2) For deep benchmarks, ASIC designs that support efficient bootstrapping achieves a significant
increase in performance compared to FPGA and GPU designs. For example, BTS is 2.6× and 7.8× faster than FAB and
TensorFHE with LR, respectively. As ARK proposes further improvement over bootstrapping, including algorithm
optimization and architecture co-design, it achieves better performance when bootstrapping dominates the workflow. In
ResNet20, where bootstrapping takes up to 76.2% of the total workload, ARK achieves a 6.5× speedup compared to BTS.
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Fig. 9. Performance of Bootstrapping over increasing on-chip SRAM volume.

End-to-end shallow applications. Recent works like BTS, ARK, Poseidon, etc., focus on the acceleration of deep
workloads and do not cover much discussion of shallow applications. Since shallow applications are also widely used
in real world, here, we briefly discuss the performance of F1 in the shallow workloads. In shallow applications, F1
achieves sufficient acceleration as bootstrapping is not required. In LoLa-CIFAR with unencrypted model weights, F1
achieves 5, 011× speedup compared to the CPU. In LoLa-MNIST, F1 is 17, 412× and 15, 086× faster than CPU when the
model weights is unencrypted and encrypted, respectively. Subsequent works like CraterLake don’t have a significant
advantage over F1 in shallow tasks as they allocate a significant amount of hardware resources to operations specific to
deep applications, such as bootstrapping.

Impact of On-chip storage. The performance of ASIC-based FHE accelerators can be significantly influenced by the
size of on-chip memory storage [63, 65, 81, 82]. Optimal acceleration is achieved by storing data in on-chip memory to
minimize frequent data input/output between on-chip and off-chip memory. However, FHE schemes, particularly during
key-switching operations, require a large amount of data, such as ciphertexts and switching keys. If the on-chip memory
cannot accommodate all of this data, extensive data communication and exchange occur, resulting in a significant
portion of the execution time.

Figure 9 illustrates the impact of increasing on-chip SRAM memory on bootstrapping performance using Crater-
Lake [82] and BTS [65]. These accelerators exhibit different internal designs and implementations, leading to varying
behaviors as the volume of SRAM increases. However, a general trend can be observed: performance initially improves
and then stabilizes with additional on-chip SRAM. This is because larger on-chip SRAM can store more intermediate
data, reducing the frequency of costly data communication, even with high-speed HBM. Nevertheless, once the on-chip
SRAM reaches a sufficient size where no further data exchange is required, additional SRAM does not contribute to
further performance gains.
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7 Discussion on Future Directions

Inspired by the above qualitative (§5) and quantitative (§6) studies, in this section we discuss some future directions of
designing and implementing FHE accelerators.

7.1 Application-driven Design Approach

Most existing FHE accelerators are trying to build increasingly powerful accelerators by leveraging more advanced
architecture technologies, such as better semiconductor manufacturing processes [63, 65, 78, 81, 82]. While such design
methods can largely improve the performance of FHE schemes, they also become more unaffordable, especially for
these ASIC-based solutions.

We envision that a future opportunity for FHE accelerators could be the application-driven design approach. The
reason is that for some practical FHE applications, the performance is determined not only by the accelerators with
extremely high FHE computing performance, but also by the whole architecture stack that customizes with the
application. Table 3 provides a brief overview of these works. For example, FHE is widely adopted in private set
intersection (PSI), and a recent work called INSPIRE co-designs the storage architecture with the FHE accelerator to
improve the end-to-end performance of the PSI application by minimizing the overhead of data movement between
the storage controller and FHE accelerators [68]. Cheetah [77] and FxHENN [89] are two works targeting accelerating
HE-based CNN inference applications by co-designing CNN inference workflows and HE algorithms. We believe such
an application-driven design approach could better balance the application requirements, costs, and design difficulties,
providing a promising direction for the future.

7.2 Supporting both Word-wise & Bit-wise FHE Schemes

As discussed in §3, word-wise FHE is more suitable for polynomial evaluation, while bit-wise FHE is preferred for
non-polynomial evaluation. However, real-world applications, such as machine learning tasks, require both polynomial
and non-polynomial evaluations to be effective. Moreover, ciphertexts switch between the two forms (e.g., CKKS
and FHEW in [69]) is extremely complicated, thus time-consuming. Therefore, designing a FHE accelerator that can
simultaneously support both word-wise and bit-wise FHE schemes, and further perform efficient ciphertext switch and
evaluation is important for real-world applications, which is worthy of future investigation.

7.3 Enhanced Software/Hardware Co-design

In recent works, the software has been considered an important part of the design. Some works, such as F1 [81], Crater-
Lake [82], use compilers for a software/hardware co-design solution. However, they do not provide a comprehensive
description of the software design. We believe fully functional compilers should be co-designed with general FHE
compilers, such as EVA [46]. As the FHE compiler SoK paper [86] indicates, general FHE compilers can optimize FHE
programs based on the cost model of FHE schemes. We believe these general FHE compilers could be integrated with
FHE accelerator compilers for improved end-to-end performance by considering a cost model from a hardware-level
perspective, which points to a potential future direction.

7.4 From Scale-up to Scale-out

Current FHE acceleration solutions mostly focus on scale-up, i.e., improving the performance of a single accelerator
vertically. However, scale-out, i.e., connecting multiple FHE accelerators via networking horizontally, should also be an

23



Name
Employed
Hardware

Supported
Application

HE Schemes

INSPIRE [68] ASIC PIR BFV
Cheetah [77] ASIC CNN Inference BFV
FxHENN [89] FPGA CNN Inference CKKS

Table 3. Application-specific FHE Accelerators.

Employed Hardware AES (s) Prince (s)

CPU [48] 55 (baseline) 3.3 (baseline)
GPU [44] 7.3 (7.5× ↑) 1.28 (2.58× ↑)
ASIC [75] 0.44 (125× ↑) 0.05 (66× ↑)

Table 4. Accelerators for NTRU-based FHE schemes.

effective way to further improve the performance of FHE applications. As discussed in §4, the data inflation problem
has posed a challenge to efficient data movement between on-chip and off-chip memories. This challenge also exists
when we connect multiple FHE accelerators via networking in a scale-out manner. Thus, FHE accelerator and network
co-design, e.g., integrating both FHE acceleration functions and high-performant networking controllers on the same
chip, should be a potential research direction in the future.

7.5 Accelerating NTRU-based Schemes

In this paper, we do not cover accelerators for traditional NTRU-based solutions in details since (1) there are only
few literatures targeting at designing accelerators for NTRU-based FHE schemes and (2) these NTRU-based schemes
were believed to be vulnerable to attacks and thus impractical [61]. However, recently various modern NTRU-based
solutions have been proposed to overcome its original security problems [29]. Moreover, NTRU-based solutions have
the advantages of low memory consumption and fast computation. Therefore, we believe that designing practical
accelerators for modern NTRU-based solutions also deserves future exploration.

We provide a brief summary of the performance of existing accelerators for NTRU-based schemes using GPUs
[44] and ASICs [75]. Following the conventions of these works, we use the homomorphic evaluation of AES and
Prince as the performance metric [48]. The CPU implementation in [48] serves as the baseline for comparison. Since
these NTRU-based accelerators are not open-sourced, we directly report the data from [44, 48, 75], and the results are
presented in Table 4. Compared to the CPU implementation, the GPU and ASIC-based accelerators show performance
improvements ranging from 2.6× to 7.3× and 66× to 125×, respectively.

One observation is that the acceleration ratio of NTRU-based accelerators, when compared to accelerators designed
for CKKS/BFV/TFHE in §5.1, is relatively lower. For instance, CraterLake can outperform the CPU by five orders
of magnitude, while the latest accelerator for NTRU-based schemes [75] achieves only three orders of magnitude
speedup. We identify two potential reasons for this discrepancy: (1) NTRU-based schemes themselves are reported
to be faster than RLWE-based FHE schemes, leaving less room for further acceleration; (2) The latest ASIC-based
accelerator for NTRU schemes is currently simpler than the accelerators discussed in §5.1, indicating potential for
further improvements.
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8 Conclusion

This paper presents a comprehensive systematization of knowledge through qualitative and quantitative analysis of 14
existing fully homomorphic encryption (FHE) accelerators and their evolution process. We have identified four key
trends in the development of these accelerators. First, there is a growing emphasis on leveraging advanced hardware to
achieve better acceleration performance. Second, a software/hardware co-design approach is commonly used. Third,
there is a focus on enhanced programmability. Fourth, the support for an unlimited number of multiplications has
improved through better bootstrapping operation support. Our survey aims to provide researchers with a comprehensive
understanding of the current state of FHE accelerators. Additionally, we discuss potential future directions for designing
and implementing FHE accelerators, such as developing accelerators for NTRU-based FHE schemes and considering
a scale-out methodology instead of scale-up. We hope these discussions will inspire the research community and
illuminate the future development of FHE accelerators.
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A NTT/FFT

Given a polynomial 𝐴 of degree 𝑛 as follows:

𝐴(𝑥) =
𝑛−1∑︁
𝑗=0

𝑎 𝑗𝑥
𝑗 (3)

The polynomial can be represented in the form of the vector of its coefficients as 𝒂 = (𝑎1, 𝑎2, ..., 𝑎𝑛−1). While the
addition operation of two polynomials 𝒂 and 𝒃 (i.e., element-wise addition of their coefficients vectors) is trivial, the
multiplication of 𝒂 and 𝒃 (denoted as 𝒂

⊗
𝒃 in our paper) is time-consuming with the computation complexity of

𝑂 (𝑛2). Since polynomial multiplication is the fundamental operation in FHE schemes, e.g., encryption, homomorphic
operations, etc., such high computation complexity causes FHE schemes to be extremely inefficient.

To optimize polynomial multiplication, another representation of the polynomial — point-value representation — can
be exploited. A polynomial of degree𝑛 can be represented by𝑛 distinct point-value tuples: {(𝑥0, 𝑦0), (𝑥1, 𝑦1), ...(𝑥𝑛−1, 𝑦𝑛−1)},
where 𝑦𝑘 = 𝐴(𝑥𝑘 ) and 𝑘 ∈ [0, 𝑛). To achieve calculations between polynomials, e.g., 𝐴 and 𝐵, the same group of 𝑥𝑘 is
chosen from both polynomials 𝐴 and 𝐵. Under point-value representation, both addition and multiplication between
two polynomials of degree 𝑛 only require 𝑛 point-wise operations on 𝑦𝑘 . Therefore, the computation complexity is
reduced to 𝑂 (𝑛).

However, the conversion from coefficient representation to point-value representation is still time-consuming and
requires the calculation of 𝑦𝑘 = 𝐴(𝑥𝑘 ) for every 𝑥𝑘 . The time complexity of evaluating each 𝐴(𝑥𝑘 ) is𝑂 (𝑛), thus leading
to overall time complexity of 𝑂 (𝑛2) for 𝑘 ∈ [0, 𝑛). The same complexity is needed for the inverse conversion.

To lower the time complexity of representation conversion, we choose special 𝑥𝑘 values. For a polynomial of degree
𝑛− 1, we use the roots of an equation 𝜔𝑛 = 1 as 𝑥𝑘 values. The equation has 𝑛 roots, denoted as 𝑒2𝜋𝑖𝑘/𝑛 , 𝑘 = 0, 1, ..., 𝑛− 1.
They are usually written in simplified form as 𝜔𝑘

𝑛 = 𝑒2𝜋𝑖𝑘/𝑛 , which is the power of 𝜔𝑛 = 𝑒2𝜋𝑖/𝑛 . With these roots, we
can write Equation 3 as

𝐴𝑘 = 𝐴(𝜔𝑘
𝑛 ) =

𝑛−1∑︁
𝑗=0

𝑎 𝑗𝜔
𝑘 𝑗
𝑛 , 𝑘 ∈ [0, 𝑛) (4)

Equation 4 is called Discrete Fourier Transform (DFT). Our goal is to accelerate the transformation with the property
of 𝜔𝑛 .

For 𝜔𝑛 , we have the following theorems:

𝜔2𝑘
2𝑛 = 𝜔𝑘

𝑛 (5)

𝜔
𝑘+𝑛

2
𝑛 = −𝜔𝑘

𝑛 (6)

Given a polynomial 𝐴(𝑥) = 𝑎0 + 𝑎1 · 𝑥1 + 𝑎2 · 𝑥2 + ... + 𝑎𝑛−1 · 𝑥𝑛−1, we can re-arrange it to 𝐴(𝑥) = (𝑎0 + 𝑎2 · 𝑥2 + 𝑎4 ·
𝑥4 + ... + 𝑎𝑛−2 · 𝑥𝑛−2) + 𝑥 (𝑎1 + 𝑎3 · 𝑥2 + 𝑎5 · 𝑥4 + ... + 𝑎𝑛−1 · 𝑥𝑛−2). Let 𝐴[0] (𝑥) = 𝑎0 + 𝑎2 · 𝑥1 + 𝑎4 · 𝑥2 + ... + 𝑎𝑛−2 · 𝑥

𝑛−2
2

and 𝐴[1] (𝑥) = 𝑎1 + 𝑎3 · 𝑥1 + 𝑎5 · 𝑥2 + ... + 𝑎𝑛−1 · 𝑥
𝑛−2
2 . Then we have 𝐴(𝑥) = 𝐴[0] (𝑥2) + 𝑥𝐴[1] (𝑥2).

Therefore, we can use 𝑥𝑘 = 𝜔𝑘
𝑛 to sample values. For 𝑘 = 0, 1, · · · , 𝑛/2 − 1, we have

𝐴(𝜔𝑘
𝑛 ) = 𝐴[0] (𝜔2𝑘

𝑛 ) + 𝜔𝑘
𝑛𝐴

[1] (𝜔2𝑘
𝑛 ) (7)
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Based on Theorems 5, the equation transforms into

𝐴(𝜔𝑘
𝑛 ) = 𝐴[0] (𝜔𝑘

𝑛
2
) + 𝜔𝑘

𝑛𝐴
[1] (𝜔𝑘

𝑛
2
) (8)

Similarly, for 𝑘 + 𝑛/2, we have:

𝐴(𝜔𝑘+𝑛
2

𝑛 ) = 𝐴[0] (𝜔2𝑘+𝑛
𝑛 ) + 𝜔

𝑘+𝑛
2

𝑛 𝐴[1] (𝜔2𝑘+𝑛
𝑛 ) (9)

Based on Theorems 5 and 6, the equation now becomes:

𝐴(𝜔𝑘+𝑛
2

𝑛 ) = 𝐴[0] (𝜔𝑘
𝑛
2
) − 𝜔𝑘

𝑛𝐴
[1] (𝜔𝑘

𝑛
2
) (10)

Note that 𝑘 and 𝑘 + 𝑛/2 have covered all integers ranging from 0 to 𝑛 − 1. Then the problem becomes a divide-and-
conquer problem. The origin problem 𝐴 is split into two subproblems of 𝐴[0] and 𝐴[1] whose degrees of polynomial
are 𝑛/2. It requires 𝑛/2 extra multiplications to recover 𝐴 from 𝐴[0] and 𝐴[1] . After that, 𝐴[0] and 𝐴[1] can be further
divided into smaller subproblems following the same scheme. The recursion ends when the degree of the polynomial in
the subproblem is 1. According to the master theorem in [41], the time complexity can be reduced to 𝑂 (𝑛 log𝑛).

The aforementioned process is called Fast Fourier Transform (FFT). When the degree of polynomials is 𝑛, we refer to
the transform as an 𝑛-point FFT. The inverse operation of FFT is called iFFT, which can be implemented with a similar
approach.

Number Theoretic Transforms (NTT) is similar to DFT but works with the finite field. Different from DFT in
Equation 4, NTT is formulated as

𝐴𝑘 =

𝑛−1∑︁
𝑗=0

𝑎 𝑗𝑔
𝑘 𝑗
𝑛 mod 𝑝, 𝑘 ∈ [0, 𝑛), (11)

where 𝑝 is a prime, and 𝑔𝑛 is the primitive n-th root of unity modulo 𝑝 , which satisfies the following theorems:

𝑔2𝑘2𝑛 ≡ 𝑔𝑘𝑛 mod 𝑝 (12)

𝑔
𝑘+𝑛

2
𝑛 ≡ −𝑔𝑘𝑛 mod 𝑝 (13)

With Theorems 12 and 13, NTT can be accelerated following the same scheme we discussed in FFT, except for the
multiplication and addition/subtraction, which need to be replaced by modular multiplication and modular addition/-
subtraction, respectively.

B 4-step FFT/NTT Algorithm

B.1 Introduction to 4-step FFT/NTT Algorithm

In this section, we use the example of an 𝑛-point FFT to illustrate the workflow of the 4-step FFT/NTT algorithm. Recall
the original FFT (DFT) in Equation 4. In FHE schemes, 𝑛 is a power of two and can be expressed as the product of two
numbers 𝑛 = 𝑅 ·𝐶 . Based on this property, we consider the 𝑛 input numbers {𝑎 𝑗 , 𝑗 ∈ [0, 𝑛)} as an 𝑅 ×𝐶 matrix. In this
way, the workflow of the 4-step FFT is as follows.

1. Transpose the 𝑅 ×𝐶 input matrix and get a new 𝐶 × 𝑅 matrix. Perform FFT on each row of the 𝐶 × 𝑅 matrix (i.e., 𝐶
independent 𝑅-point FFTs). We let matrix 𝑨′ denote the results of FFTs.

2. Transpose matrix 𝑨′ and get a new 𝑅 ×𝐶 matrix 𝑨′′.
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3. Generate a 𝑅 ×𝐶 twisting factor matrix 𝑭 = [𝐹𝑖, 𝑗 ], where 𝐹𝑖, 𝑗 = 𝜔
𝑖 𝑗
𝑛 . Then perform dyadic multiplication between

matrix 𝑨′′ and matrix 𝑭 . Let matrix 𝑨′′′ denote the multiplication result.

4. Perform FFT on each row of the 𝑅 ×𝐶 matrix 𝑨′′′ (i.e., 𝑅 independent 𝐶-point FFTs). Transpose the result of FFT
and get a new 𝐶 × 𝑅 matrix, denoted as 𝑨.

𝑨 is the final result of the 𝑛-point FFT with some differences in the placement order of the result numbers from the
original FFT algorithm. The 4-step NTT algorithm follows a similar workflow with modular operations between integers.
Since the order of coefficients does not affect the correctness of element-wise polynomial addition and multiplication,
the 4-step FFT/NTT algorithm can be easily applied in FHE schemes to replace the original FFT/NTT algorithm. Actually,
we could skip the transpose in the first step by storing the input numbers in column-major order, and skip the transpose
in the fourth step because of the order-independent element-wise operations.

B.2 Comparison between the 4-step FFT/NTT Algorithm and the Original FFT/NTT Algorithm

This section will show the pros and cons of the 4-step FFT/NTT algorithm by comparing it with the original FFT/NTT
algorithm.

B.2.1 Efficient and Practical Parallelism As mentioned in §4.1.1, the original FFT/NTT algorithm can hardly be ac-
celerated via parallelism because of strict data dependency and high computation resource consumption. The 4-step
FFT/NTT algorithm alleviates both problems.

Less Data Dependency: According to the aforementioned workflow, the 4-step FFT/NTT algorithm decomposes the
𝑛-point FFT/NTT operation into𝐶 independent 𝑅-point FFT/NTTs in the first step, a global transpose in the second step,
𝑛 independent multiplications in the third step, and 𝑅 independent 𝐶-point FFT/NTTs in the last step. Although the
four steps should be executed one by one, the parallelism in these steps (except for the second step) is fully exploited as
these independent operations can be performed simultaneously. Since 𝑅 and 𝐶 can be quite large (e.g., when 𝑛 = 65536,
𝑅 = 𝐶 = 256), the parallelism is high enough to fully utilize the performance capacity of hardware accelerators. Actually,
the global data dependency problem in the original FFT/NTT algorithm still exists in the second step when transposing
the matrix. Consequently, a large transpose network is required. Recent works prefer such a design since 1) the transpose
network is much easier to design than FFT/NTT due to its fixed workflow; 2) the transpose network can be reused in
other operations such as permutation [81], which improves the resource utilization.

Low Resource Consumption: Compared to the original FFT/NTT, the total computation workload in the 4-step
FFT/NTT is not reduced. But the original algorithm is decomposed into multiple smaller ones with much fewer input
numbers (we choose 𝑅 and 𝐶 close to

√
𝑛 in many cases). Therefore, instead of designing a fully pipelined 𝑛-point

FFT/NTT circuit, we can combine multiple small pipelined FFT/NTT units (i.e., 𝑅-point and 𝐶-point FFT/NTT units)
to achieve the same arithmetic function, reducing the hardware design complexity. To reduce hardware resource
consumption, we can reuse 𝑅-point FFT/NTT units rather than implement all the units as dedicated ones (i.e., 𝑅 𝐶-point
FFT/NTT units and𝐶 𝑅-point FFT/NTT units). Therefore, the 4-step FFT/NTT algorithm requires much fewer hardware
resources to achieve pipeline parallelism.

B.2.2 Increased Memory Overhead Although promising, the 4-step FFT/NTT also causes increased memory overhead
due to pre-computed parameters. In addition to the input data and calculation results, we need to store the twiddle
factors for 𝑛-point FFT/NTT in the original algorithm. Larger 𝑛 leads to more twiddle factors. Although the number of
twiddle factors is reduced in the 4-step FFT/NTT algorithm since we only need twiddle factors for 𝑅-point and 𝐶-point
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FFT/NTTs, we need to store the twisting factors introduced in the third step of the 4-step FFT/NTT algorithm. The size
of twisting factors in the 4-step FFT/NTT algorithm is close to the size of twiddle factors in the original algorithm,
making the requirements of total storage even more strict. To address the problem, recent works generate twiddle and
twisting factors on the fly rather than cache all the factors in the memory [65, 82].

33


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ciphertexts and Keys
	2.2 Polynomial Operations
	2.3 RNS Decomposition

	3 Fully Homomorphic Encryption
	3.1 Encoding, Decoding, Encryption & Decryption
	3.2 Homomorphic Evaluation
	3.3 Ciphertext Maintenance

	4 What Makes  FHE Slow & the Challenges of Accelerating Them
	4.1 Challenges of Accelerating Polynomial Computation
	4.2 Challenges of Accelerating Key-switching
	4.3 Challenges of Accelerating Bootstrapping

	5 FHE Accelerators
	5.1 Survey of Existing FHE Accelerators
	5.2 Upper-layer Software Support
	5.3 Observations on Evolution of Existing Works

	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Evaluation Results

	7 Discussion on Future Directions
	7.1 Application-driven Design Approach
	7.2 Supporting both Word-wise & Bit-wise FHE Schemes
	7.3 Enhanced Software/Hardware Co-design
	7.4 From Scale-up to Scale-out
	7.5 Accelerating NTRU-based Schemes

	8 Conclusion
	References
	A NTT/FFT
	B 4-step FFT/NTT Algorithm
	B.1 Introduction to 4-step FFT/NTT Algorithm
	B.2 Comparison between the 4-step FFT/NTT Algorithm and the Original FFT/NTT Algorithm


