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Abstract—Secret Sharing (SS) is widely adopted in secure
Multi-Party Computation (MPC) with its simplicity and compu-
tational efficiency. However, SS-based MPC protocol introduces
significant communication overhead due to interactive operations
on secret sharings over the network. For instance, training a
neural network model with SS-based MPC may incur tens of
thousands of communication rounds among parties, making it
extremely hard for real-world deployment.

To reduce the communication overhead of SS, prior works stat-
ically convert interactive operations to equivalent non-interactive
operations with extra computation cost. However, we show
that such static conversion misses chances for optimization,
and further present SOLAR, an SS-based MPC framework
that aims to reduce the communication overhead through dy-
namic communication-computation conversion. At its heart, SO-
LAR converts interactive operations that involve communication
among parties to equivalent non-interactive operations within
each party with extra computations and introduces a speculative
strategy to perform opportunistic conversion when CPU is idle
for network transmission. We have implemented and evaluated
SOLAR on several popular MPC applications, and achieved 1.6-
8.1 times speedup in multi-thread setting compared to the basic
SS and 1.2-8.6 times speedup over static conversion.

I. INTRODUCTION

Secret Sharing (SS) is one of the most famous primitives
to construct MPC [16], [19] programs because of its simplic-
ity and computational efficiency [6]. SS protects privacy by
randomly splitting the secret data to multiple sharings and
distributing to the parties. The secret data is reconstructed only
when the parties reach an agreement. During evaluation of
the function, the parties operates on secret sharings with the
protocol and get the result which, after reconstruction, equals
to the result produced by the same function evaluated with
plaintext directly.

SS incurs heavy communication overhead because com-
monly used operations such as multiplications involve com-
munication between parties. For example, the ”millionaire
function” that takes two secret-shared numbers as input and
outputs a secret shared boolean value, would require more than
five rounds of interaction [29], which may cost hundreds of
milliseconds on the Internet.

It has been explored that the communication round com-
plexity can be reduced by converting multiple consecutive
operations to a single ”flattened” operation that requires less
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communication rounds. Recent works such as ABY2.0 [25]
and multi-fan-in gates [24] have leveraged this opportunity and
designed specified protocols. For example, ABY2.0 designed a
MUL3 protocol that produces the multiplication of three secret
sharings with only one round of interaction, while the original
multiplication protocol requires two rounds.

However, it also brings extra computation overhead to
convert operations for saving communication. To limit com-
putation overhead, current frameworks with conversion adopts
static conversion strategy, which converts every three or four
operations into a flattened operation. But static conversion may
miss the chance for optimization as we have identified certain
opportunities to convert at most eight operations without too
much computation overhead in MPC programs.

To exploit more chances to save communication, we build
SOLAR, a SS based MPC framework that performs dynamic

communication-computation conversion on operations of se-
cret sharing. With dynamic conversion, SOLAR maximizes
the speedup over basic SS protocols without manually set-
ting parameters. Moreover, extra computation is limited by
interrupting conversion process when the conversion overhead
exceeds its benefit.

Our basic idea to achieve dynamic conversion is to model
the computation and communication cost in runtime and
increase the conversion size until the time spent in conversion
has surpassed a threshold or timeslot, which indicates that
the computation overhead is too large. When time spent in
conversion surpasses timeslot, SOLAR interrupts conversion
to avoid increasing total cost. However, two major challenges
need to be addressed to achieve maximum speedup through
the dynamic conversion.

1) Adjusting timeslot is difficult in runtime because the
speedup relates to both reduced communication and in-
creased computation, which are difficult to model accu-
rately.

2) Interrupting conversion wastes the computation already
spent and the operation needs re-run which introduces
extra cost.

The key observation to address the above challenges is
that the original operations could serve as indicators of
timeslot, because the time spent in interaction is an accurate
estimation of saved communication cost. Moreover, original
operations can also serve as the efficient fallback for inter-
rupted conversions. Specifically, during the evaluation of an
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Fig. 1. An example of converting interactive operations into non-interactive
operations and conducted while CPU is idle. Assume O1, O2, O3 are inter-
active operations in basic SS. The timeslot presents a chance for evaluating
Oi in non-interactive approach. The evaluation of next operation could start
immediately after prior operation finished non-interactively within timeslot.

interactive operation, there is a timeslot when the parties are
communicating with each other, as shown in Figure 1. If
the operation is converted successfully and evaluated as a
flattened operation within the timeslot, the communication is
saved and can be interrupted. Otherwise, the conversion is
interrupted and the original operation will act as a fallback.
With these measures, 1) SOLAR measures the timeslot for
saved communication cost accurately with original operations.
2) Interrupted conversion of operation does not need re-run
because the result of original operation is equivalent and acts
as an efficient fallback for interrupted conversion.

However, it has higher computation cost to perform both
original and converted operations. SOLAR relieves this prob-
lem by merging the common part of computation in original
and converted operations. As shown in Figure 1, the figure
on the right side shows optimized pattern. The orange blocks
represent converting original operations, and they reuse the
intermediate result of original operations marked by blue.
Conversions are conducted in the timeslot when the original
operations are transmitting data and do not consume CPU
time. Note that converting cost is growing and we will
illustrate this in Section II-B.

Moreover, in order to exploit more chances to reduce
communication, SOLAR uses speculative conversion strategy
that always performs conversion in the timeslot to maximize
speedup because accurate estimation of timeslot and low
fallback price enable us to exploit all chances for optimization
without risk of increasing total cost. If the conversion finishes
within the timeslot, i.e., before the original operation finishes
interacting with other parties, the interaction in the original op-
eration is interrupted and some communication cost is saved.
Otherwise, the conversion will be interrupted and the original
operation delivers its result as fallback for the operation.

We implemented SOLAR on top of ABY, a popular SS
based MPC framework. In essence, SOLAR is built as an
optimizer that watches the finish of two subroutines, namely
original operation and the process of converting and evaluate
the operation non-interactively. SOLAR accepts the first result
produced by the two subroutines and interrupts the other
one. We tested SOLAR on basic operators and programs
under both semi-honest security and malicious security with
authentication. The results show that SOLAR achieves 1.6-
8.1⇥ speedup over basic SS on both security settings on tested
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Fig. 2. Profiling of NN, PSI, uDIV under different network conditions. We
simulate the propagation delay over parties. The communication cost contains
both transmission delay and propagation delay.

applications. It also achieves 1.2-8.6⇥ speedup over static
conversion.

II. BACKGROUND

MPC [16], [19] has been studied for decades, and the
application of SS based MPC has drawn great attention
recently mainly because of arising concern of privacy in the
era of big data. SS protocols have been applied in privacy-
preserving applications such as Private Set Intersection [10],
[27], [28], Biometric Matching [17], [18], Data Mining [21],
and Federated Learning [31], [32].

However, SS based MPC still faces large communication
overhead because common operations such as multiplication
and comparison on secret sharings require at least one round of
communication between parties. These interactive operations
are very common in MPC programs. As a result, most privacy-
preserving applications based on SS protocols are several
orders of magnitude slower than non-MPC applications and
communication cost dominates the total cost. We tested Private
Set Intersection (PSI), Neural Network (NN) inference on
MNIST dataset and unsigned division (uDIV) on two parties
over the network with 1000 Mbps bandwidth and different
network propagation delay (5ms, 20ms, 40ms). The result
shows the dominance of communication cost, especially in
high-latency environment, where over 70% time spent in
communication, as shown in Figure 2.

To illustrate the root cause for communication overhead, in
this section, we introduce formal definition and operations in
SS, including how SS protects private data, how to perform
basic operations such as multiplication on secret sharings, and
current strategies to optimize the performance of SS protocol.
To simplify narration, we assume there are two parties.

A. Secret Sharing

The general workflow of SS with multiple parties and a
joint function is 1) The parties generate secret sharings of
their private data and send to other parties so that each
party has parts of the secret sharings of private data. 2) The
parties describe the joint function as a circuit and evaluate
collaboratively, in which the inputs are secret sharings of
private data and the outputs are secret sharings of the function
output. 3) The parties reconstruct the output.

In the first stage, the parties generate secret sharings to
protect the value of private data. For example, in two-party



arithmetic secret sharing, secret value x is split randomly into
two sharings x = x0 + x1 mod 2k by the owner of x.
The owner sends one of the secret sharing to the other party,
who cannot know the real value of x with only one sharing.
In general n-party setting, similarly, every party with private
data also generates secret sharings according to the number of
parties and send to other parties.

In the second stage, the function to be evaluated jointly is
first expressed as a circuit which is made up of gates, which are
the basic operations that can be evaluated on secret sharings.
For example, if the function is to calculate the product of two
vectors with length l, in arithmetic sharing, the circuit will be
l MUL gates and the output of l MUL gates will be passed
into the input of l � 1 ADD gates.

Some operations on secret sharings can be done locally
without interaction, while some operations require interaction
of parties to ensure correctness. For example, in two-party
arithmetic secret sharing, to multiply two secret sharings xi

and yi and ensure the reconstructed result is equal to x · y,
noticed that x · y = x0y0 + x0y1 + x1y0 + x1y1 involves
the product of sharings in different parties (x0y1 and x1y0),
at least one round of communication is needed to securely
calculate x · y. Furthermore, it takes only microseconds to
compute multiplication locally, while communication takes
at least milliseconds over the Internet, so communication
becomes the major cost in this operation.

In the last stage, the parties reconstruct the output of circuit
as the result of function. This is symmetric to the sharing
process in the first stage and is not the major cost of SS
protocols. It is the second stage that takes the major part in
the total cost of SS protocols.

Interactive Operation in SS Operations that cannot be
evaluated locally and requires interaction are called interactive

operations and they takes most of the total cost, in contrast
of the non-interactive operations which can be performed
locally. To show how to evaluate interactive operation securely,
consider the following operation: secret value x and y is
owned by party P0 and party P1 respectively. The function
is to multiply two secret values. In arithmetic secret sharing,
x0 + x1 = x and y0 + y1 = y and Pi owns xi, yi, i 2 {0, 1}.
Denote [[·]] as secret sharings, then x0, x1 can be noted as [[x]]
and y0, y1 can be note as [[y]].

The evaluation of interactive operation is adopted from
Beaver’s circuit randomization [5] and the protocol is as
follow:

• The parties generate random secret rx, ry and keep
[[rx]], [[ry]] locally. This can be achieved by the parties
generating random numbers locally without telling the
other party.

• The parties reconstruct x � rx and y � ry . And Pi

calculates (x�rx)(y�ry)[[1]]+(x�rx)[[ry]]+[[rx]](y�
ry) + [[rxry]].

The correctness can be proved by reconstructing the result
which equals to x · y. Note that [[rxry]] requires extra com-
putation but it can be done before the task since rx, ry are
irrelevant to the real input.

Since it requires reconstruction to perform interactive opera-
tions, the performance of interactive operation is several orders
of magnitude slower than non-interactive operations. Note that
other SS schemes such as boolean sharing which splits secrets
with boolean XOR operation have similar operations, in which
AND requires reconstruction of secret sharings.

B. SS Communication Optimizations

To perform reconstruction in interactive operations, at least
one round of communication is needed to send secret sharing
to other parties. However, the communication round can be
reduced when evaluating multiple interactive operations.

Interactive Operation Conversion. Consecutive interactive
operations can be converted and evaluated with less rounds
of communication. For example, if there are two consecutive
interactive operations O1 = x · y and O2 = O1 · z in which
x, y, z are secret data and protected by SS. In basic protocol,
O1 requires one round of communication and O2 requires one
more round. However, the communication can be reduced with
the following expression:

O2 = O1 · z
= x · y · z
= (x� rx + rx)(y � ry + ry)(z � rz + rz)

= (x� rx)(y � ry)(z � rz) + (x� rx)(y � ry)rz

+ (x� rx)ry(z � rz) + rx(y � ry)(z � rz)

+ (x� rx)ryrz + rx(y � ry)rz + rxry(z � rz) + rxryrz

(1)
In Eq. 1, rx, ry, rz is the random number generated collab-

oratively by the parties. Similar to Protocol II-A, the parties
can first reconstruct (x� rx), (y � ry), (z � rz). Denote [[1]]
as the secret sharing of 1, [[O2]] can be set as:

[[O2]] = (x� rx)(y � ry)(z � rz)[[1]] + (x� rx)(y � ry)[[rz]]

+ (x� rx)(z � rz)[[ry]] + [[rx]](y � ry)(z � rz)

+ (x� rx)[[ryrz]] + (y � ry)[[rxrz]]

+ [[rxry]](z � rz) + [[rxryrz]]
(2)

Again, [[rxryrz]], [[rxry]], [[rxrz]], [[ryrz]] can be computed
before the task. So in online execution, [[O2]] can be calculated
with only one round of communication, which is to reconstruct
(x�rx), (y�ry), (z�rz). We can apply similar conversion on
four or even more operations and save more communication.
However, it will also introduce extra computation overhead
which is exponential to the number of involved secret sharings.
As shown in Eq. 2, it involves 23 = 8 multiplications to
evaluate two consecutive MUL on secret sharings.

To solve this, current works set fixed number of involved
secret sharings to limit computation overhead. But with fixed
conversion, we might lose opportunity to optimize when the
computation facility is powerful or the communication cost is
very large due to high latency network.

Considered that the non-interactive approach usually out-
performs the interactive approach and both approach can be
taken independently, we are motivated to speculatively convert



every interactive operation during execution and interrupt the
conversion when the operation has been finished interactively.
Furthermore, the conversion could be scheduled to the timeslot
when the CPU is idle for network transmission during interac-
tion, which reduces idle cycles of CPU and avoid interfering
the interactive executor.

However, the main difficulty is how to deal with inter-
rupted conversion without disposing generated random secrets.
Specifically, the random secrets such as [[rx]], [[ry]], [[rz]] and
their multiplications shown in Eq. 2 have to be disposed if
O2 is interrupted because it is slower than original operations.
Although it is feasible to prepare as much random data as
possible, reloading random secrets is still expensive especially
when the size of random secret is large.

To solve this problem, we design new expression of secret
sharings which can use the same set of random secrets in both
interactive and non-interactive approach. This makes converted
operations compatible with original operations and can be
interrupted without extra cost. We elaborate the detail in the
next section.

III. DESIGN AND IMPLEMENTATION

A. Overview of SOLAR

At the core of SOLAR, it exploits original operations as
a guidance for adjusting the size of conversion dynamically.
Unlike previous works that fix the conversion size to a small
value [24], [25] and perform conversion statically, SOLAR
performs conversion for the next operation dynamically and
checks if the conversion finish within a timeslot which is
estimated by the time spent in interacting with the other party
in original operations. If the conversion and non-interactive
evaluation finishes within the timeslot, it means SOLAR
saves more communication time than extra computation and
reduces total cost successfully. Otherwise the conversion is
interrupted and the original operation commits its result which
is equivalent to the interrupted operation.

The foundation of SOLAR is the conversion of interac-
tive operations to non-interactive operations, which is an
extension of Beaver’s circuit randomization [5]. In Beaver’s
basic implementation, the parties calculates the circuit with
random input before the real execution and correct the result
in real execution, as shown in Section II-A. And it performs
correction that involves reconstruction of the offset between
real input and random input in every interactive operations. In
the extended implementation, multiple interactive operations
reconstructs all offset in single round of reconstruction, but is
also leads to higher computation cost during correction.

SOLAR performs converted operations non-interactively
and check if the last converted operation finishes earlier
than the corresponding original operation, which is evaluated
interactively. However, performing both converted and original
operations leads to higher total cost, because both original
and converted operations involves reconstruction on the same
set of secret sharings and calculating with the offset. Also,
interrupted conversion will lead to higher computation cost for
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Fig. 3. Structure of SOLAR

the next converted operation because interrupted conversion
failed to supply the result needed for the next operation.

We solve this problem by merging the common part of
implementation between original and converted operations. By
expressing secret sharings in vectorized forms that contain data
for both original and converted operations, we successfully
merges the computation part of original operations into con-
verted operations. By doing this, SOLAR gets the following
benefits:

• There is no risk of increasing total cost since the common
part of evaluation is merged and the different part is
scheduled strictly within the timeslot of network trans-
mission.

• The efficiency of fallback for converted operations in-
creases because the previous original operations provides
its result that can be reused to reduce computation.

Without worrying about computation overhead, SOLAR can
achieve best performance with speculative conversion strategy.
To achieve this, SOLAR is set up as shown in Figure 3.
From the left to the right, it can be roughly divided into
four parts: Circuit Parser, two Circuit Executors including
Interactive Executor (IX) and Non-Interactive Executor (NIX),
Optimizer, and Storage. The general workflow of SOLAR is
as follow:

1) The MPC task described with a circuit and the gates are
sorted in topology order by Circuit Parser. The gates
with the same topology order are grouped as a Level

Representation and fed into Circuit Executor. Each gate is
expressed as an operation with input and operation type.
This step is common practice of many circuit based MPC
so we will not dive into detail.

2) The subexecutor IX performs the original operations
interactively. During sending data, the NIX performs con-
version on the operation and evaluate non-interactively.

3) Optimizer accepts the result from the subexecutors. It
interrupts the other subexecutor when one subexecutor
finishes first. The result will be written into storage which
represents a map from gate to its inputs and outputs.

Next we describe the detail of vectorized secret sharing
and how it enables efficient evaluation of two operations and
fallback.



B. Vectorized Secret Sharing

Vectorized secret sharing is an extended expression of secret
sharing that maintains all prior secret sharings and can be
evaluated in both IX and NIX. To simplify narration, we first
define some symbols used in the following contents, as shown
in Table I.

TABLE I
NOTATIONS AND OPERATORS USED THROUGHOUT THIS SECTION. NOTE
THAT rx AND ry IS THE CORRESPONDING RANDOM INPUT GENERATED

WITH BEAVER CIRCUIT RANDOMIZATION.

Notation Definition
[[a]] secret sharing of secret value a

ovec(x) (1, x� rx)
ovec(x+ y) (1, x� rx, 1, y � ry)
ovec(x⇥ y) (1, x� rx, y � ry , (x� rx)(y � ry))

rvec(rx) ([[rx]], [[1]])
rvec(rx + ry) ([[rx]], [[1]], [[ry ]], [[1]])
rvec(rx ⇥ ry) ([[rxry ]], [[ry ]], [[rx]], [[1]])

Then we express both original operations and converted
operations using the same notation.

Original Operations For original operations such as MUL
with two random inputs a, b and real inputs x, y in arithmetic
secret sharing, the parties first reconstruct the offset x � a

and y� b with one round of communication. Then the online
calculation proceeds as:

[[xy]] = [[rxry]] + [[ry]](x� rx) + [[rx]](y � ry)

+ (x� rx)(y � ry)

= (1, x� rx, y � ry, (x� rx)(y � ry))·
([[rxry]], [[ry]], [[rx]], [[1]])

The expression above can be regarded as an inner product
of ovec(x⇥ y) and rvec(rx ⇥ ry) as defined in Table I.

Moreover, the evaluation for operations such as ADD in
arithmetic sharing that does not need interaction can also
be expressed with rvec and ovec. Specifically, for ADD
operation:

[[x+ y]] = [[rx]] + [[x� rx]] + [[ry]] + [[y � ry]]

= (1, x� rx, 1, y � ry)·([[rx]], [[1]], [[ry]], [[1]])

As shown above, the evaluation of all original operations
can be expressed with the product of corresponding ovec and
rvec.

Converted Operations For converted operations such as
MUL3, it can also be expressed with vectorized form. As
shown in Expression 2, [[O2]] can be expressed as inner
product of ovec(x⇥ y ⇥ z) and rvec(rx ⇥ ry ⇥ rz).

Similarly, when encountered operations that does not require
interaction such as ADD in arithmetic sharing, the calculation
of next ovec proceed with + operator as in Table I. Specifi-
cally, consider the following MPC task as an example:

In secure machine learning task, two parties train a linear
model collaboratively with data x, inverted label y and param-
eter w all secret shared and unknown to both parties. Then the
gradient will be:

(wx+ y)x

With converted operation and vectorized secret sharing,
the calculation of gradient can be conducted as follow:
1) Calculate ovec(w ⇥ x) and rvec(rw ⇥ rb). 2) Calculate
ovec(w ⇥ x + y) and rvec(rw ⇥ rb + ry). 3) Calculate
ovec((w⇥x+y)⇥x) and rvec((rw⇥rb+ry)⇥rx). 4) Perform
inner product of the last rvec and ovec.

Each step in the above is defined in Table I and they do
not involve communication with the other party. Note that
the calculation of rvec can be scheduled before the task
because they only contains correlated random numbers and
are irrelevant to the real values.

To summarize, vectorized secret sharing is capable of ex-
pressing both original and converted operations. The commu-
nication cost lies in getting ovec by reconstructing the offset
as plaintext.

C. Circuit Executor

Circuit Executor consists of two subexecutors, IX and
NIX, to perform original interactive operations and converted
non-interactive operations respectively. With vectorized secret
sharing, it merges the calculation of original operations into
converted operations so that the total computation cost is
reduced.

To elaborate the detail, we divide the evaluation into three
phases according to the pattern of original operation: pre-
communication, communication, and post-communication.

Pre-communication IX prepare new ovec for reconstruc-
tion. It fetch the secret sharing from previous operation and the
random secrets of the input. For example, in a MUL operation,
IX fetches input secret sharing and the random secrets that
generated before the task.

Communication IX reconstructs the ovec which involves
communication with the other party. During the transmission,
NIX evaluates the same operation non-interactively with the
ovec and rvec. Unlike IX, NIX does not need reconstruction
to get ovec, instead, it fetches ovec either from previous
converted operation or original operation.

Post-communication If NIX finishes the converted opera-
tion before the IX finishes transmission, the IX is interrupted
and NIX commits its result. Otherwise NIX is interrupted and
IX commits its result. This is implemented by a optimizer
watching the first subexecutor to finish the operation and
interrupting the other subexecutor. The result is written to
Storage as a ovec for the next operation.

D. Security Definition

SOLAR can support both semi-honest and malicious se-
curity model. For semi-honest model, it’s assumed that the
parties will not deviate from the protocol but will try to extract
information from the messages. For malicious security, the
malicious party will deviate from the protocol and attempt to



cheat. For example, the malicious party may send fake secret
sharing values.

To detect the malicious behavior during execution, current
secret sharing protocols such as SPDZ2k [14] adopt Message
Authentication Checking (MAC) mechanism which detects the
malicious behavior by checking the MAC values with expected
values and aborting if they are not equal.

SOLAR supports both semi-honest and malicious security
because the essence of authentication is the calculation of
MAC, which is also a secret sharing. So the generation of
MAC values can also be implemented by Beaver Circuit
Randomization.

E. Implementation

We build the Circuit Executor on top of ABY, a mixed
protocol framework to conduct two-party secure computation.
All parties in SOLAR are the same and act as both client and
server. The parties reads the circuit description file formulated
in Bristol Circuit Format [1] and describe the circuit with a
DAG, in which every gate is associated with two incoming
edges indicating input signals and one outgoing edge indicat-
ing output signal.

Before the MPC task, the parties prepare rvec collabora-
tively. Since rvec is irrelevant to the input of MPC task,
the parties are able to prepare enough rvec for upcoming
task. Our implementation in this part is based on correlated
oblivious transfer that generates correlated random numbers
without revealing to the other party.

During the MPC task, the parties load rvec and reconstruct
ovec with the input of MPC task. Then each gate in the circuit
is evaluated as described in Section III-C.

Moreover, observed that most evaluation process is the
calculation of vector, we implement the Circuit Executor in
parallel. The total work is about 900 lines of code in C++.

IV. EVALUATION

In this section, we give a detailed evaluation of SOLAR for
commonly used MPC operations and applications. We first
provide the evaluation settings, including experiment environ-
ment and test cases, then introduce the evaluation metrics and
finally show the result of our experiments.

A. Setup

In our experiment, we set up two parties, and each party
has multiple computing nodes. Each node is equipped with
Intel(R) Xeon(R) Gold 5115 CPU with 20 cores and 128GB
memory. The number of threads in each computing node is
limited to 16. We tested one, two, four nodes in each party,
namely 16, 32, 64 threads. Single threading is also tested
to show the effectiveness of the optimizer when computing
performance is low.

We simulate different propagation delay over network be-
tween parties, including 5ms, 20ms and 40ms, to show the
effectiveness of SOLAR in different network delays. The
network bandwidth between two clusters is set as 1000 Mbps,

TABLE II
THE DEPTH AND WIRES OF TEST CASES EVALUATING SOLAR

Operator EQ LT uDIV SHA256 PSI NN
Depth 7 22 2205 1607 22528 382
Inputs 128 64 128 768 4096 784

Outputs 1 1 64 256 4096 10

and the network bandwidth within each cluster is set as 40
Gbps.

In all experiments, the input data from both parties is
protected using secret sharing, and only the result is revealed
in the end. We describe the circuit file using the Bristol circuit
fashion [1], in which the circuit is represented as a DAG and
each vertex is a gate with two input wires and one output
wire. Then they prepare random input as specified in Beaver’s
random circuit specified in Section II-A. In the online phase,
the parties first generate secret sharings of their input data and
evaluate each gate in topology order with the random data
generated in the first phase.

SOLAR is tested on roughly two kinds of MPC programs.
• Small basic operations: 64-bit equality testing(EQ), 64-bit

comparator(LT), and 64-bit unsigned division(uDIV).
• Large applications: SHA256, Circuit based PSI and

Privacy-preserving inference of neural network models
(NN).

Basic Operations. 64-bit EQ is performed by two boolean-
shared values conducting XORs and reductive ANDs. LT
operator is conducted on two 32-bit unsigned values. 64-bit
uDIV circuit has two inputs and one output whose bit lengths
are 64. The depths of these circuits are listed in Table II.

SHA256 is widely used in data integrity checking and
SHA256 in MPC enables collaborative data integrity checking
without leaking private data. Previous works have applied
SHA256 in MPC to check the integrity of private data [4],
[13]. But SHA256 is a deep boolean circuit involving many
communication rounds in previous MPC frameworks.

PSI defines the task to calculate the intersection of two
private sets that belongs to two parties respectively. PSI can
be applied in privacy-preserving SQL query, in which a JOIN
operation is transformed into PSI between two columns in
database. [2], [7], [20]. Circuit based PSI is a communication-
intensive application as it adopts equality checking as one of
the basic operations. In our experiment, we first securely sort
the parties’ data and then perform equality testing on adjacent
data.

Privacy Preserving Machine Learning (PPML) Previous
optimization methods on PPML mostly focus on improving
the computational throughput or communication data size [3],
[11], [23], [26] because machine learning training usually
process large volumes of training data. However, reducing the
communication rounds is also important because it involve
multiple interactive operations, leading to many communica-
tion rounds. In our experiment, we tested inference on NN with
MNIST dataset. The NN architecture is shown in Figure 4.

Some operations like sigmoid activation are not directly
supported in secret sharing, so we adopt the idea of Se-



TABLE III
TIME(MS) AND SPEEDUP OVER NAIVE SS ON BASIC OPERATIONS UNDER DIFFERENT NUMBER OF THREADS AND DIFFERENT NETWORK LATENCY. L.

STANDS FOR NETWORK LATENCY BETWEEN PARTIES. F. STANDS FOR DIFFERENT FRAMEWORKS.

Eval Threads 1 16 32 64

L.
F. SS SOLAR Speedup SS SOLAR Speedup SS SOLAR Speedup SS SOLAR Speedup

EQ
5ms 42.4 10.8 3.89 41.3 10.3 4.01 41.1 10.2 4.03 41.2 9.5 4.3

20ms 163.1 40.4 4.03 159.7 40.2 3.97 160.4 39.2 4.09 160.3 34.2 4.68
40ms 324.4 80.5 4.03 321.4 80.2 4.01 318.5 78.4 4.05 318.9 64.3 4.95

LT
5ms 125.1 43.1 5.40 122.3 21.2 5.76 121.7 19.3 6.31 122.1 15.4 7.89

20ms 488.8 83.0 5.89 483.9 78.5 6.16 482.2 79.3 6.07 483.1 61.3 7.87
40ms 968.6 163.1 5.93 964.6 155.2 6.21 963.9 158.3 6.08 962.8 119.2 8.07

uDIV
5ms 11663 2178 5.35 11548 2098 5.50 11472 2019 5.68 11335 2094 5.41

20ms 42940 7689 5.58 42814 7593 5.63 42644 7501 5.68 88543 14225 6.22
40ms 89096 15910 5.60 88727 15494 5.72 88543 14225 6.22 88122 14023 6.28

SHA256
5ms 9617 3875 2.48 9433 3638 2.59 9225 3442 2.68 9133 3305 2.76

20ms 33880 12047 2.81 33593 11857 2.83 33054 11525 2.87 32584 11047 2.95
40ms 66074 22827 2.89 65732 22591 2.91 65034 22487 2.89 64497 22028 2.92

PSI
5ms 1045 757 1.38 1013 612 1.66 992 468 2.11 983 414 2.37

20ms 3505 2079 1.69 3464 1553 2.23 3436 1217 2.82 3451 957 3.60
40ms 6771 3966 1.70 6714 3048 2.20 6683 2076 3.22 6690 1623 4.12

NN
5ms 4813 4264 1.13 2212 1398 1.58 1958 1162 1.69 1859 1116 1.67

20ms 8309 5911 1.40 5628 2210 2.54 5404 1976 2.73 5279 1746 3.02
40ms 12923 6775 1.90 10127 2546 3.98 9949 2245 4.43 9816 2007 2.89

1. Input: 𝑅28×28
2. Convolution: window size = (5,5), 

stride =(1,1), channels = 16, no padding.
3. ReLU
4. Max Pooling: window size = (2,2), 

stride = (2,2) 
5. Convolution: window size = (5,5),

stride = (1,1), channels = 16, no padding.
6. ReLU
7. Max Pooling: window size = (2,2),

stride= (2,2)
8. Fully Connected: Output = (100, 1)
9. ReLU
10. Fully Connected: Output = (10, 1)

Fig. 4. Neural Network architecture used in evaluation.

cureML [23] and simulate with other operations. ReLU layer is
implemented by a boolean circuit which produces max(x, 0).
Max Pooling layer is implemented by applying comparing
circuit on every four elements in the tensor and produces the
maximum. These layers involve non-linear gates such as AND
so they require interaction of parties.

The input size, output size and depth of the above applica-
tions are shown in Table II. Note that this may vary due to
different implementations, but it does not affect the conclusion
of our experiment since we use the same implementation
throughout the evaluation.

In each test case, we compare SOLAR with basic SS to
show the performance of SOLAR. Note that we only measure
online phase time, which is widely accepted in MPC frame-
works [15], [22], [25] because the offline phase is irrelevant
to the input of the MPC program and can be conducted in
advance.

B. Evaluation Metrics

Four primary metrics are used to evaluate the performance
of SOLAR: Speedup over basic SS on semi-honest and mali-

cious security, speedup over fixed conversion, communication
cost.

Speedup is measured by simply running the same ap-
plication with SOLAR and basic SS framework which is
implemented in ABY, respectively. We compare the online
time in different MPC frameworks and calculate the speedup.
We tested on both semi-honest security and malicious security
with authentication.

Communication Cost measures the time spent in communi-
cation in each test case including rounds and time. In basic SS,
the communication rounds stays the same with any number of
threads. With SOLAR, the communication may be interrupted
as NIX has finished earlier. Thus, we show the difference in
online communication cost between SOLAR and the basic SS.

C. Results

TABLE IV
TIME COST (MS) AND SPEEDUP OVER NAIVE SECRET SHARING UNDER

MALICIOUS SECURITY SETTING UNDER DIFFERENT NUMBER OF
THREADS AND DIFFERENT NETWORK LATENCY. L. STANDS FOR NETWORK

LATENCY BETWEEN PARTIES. F. STANDS FOR DIFFERENT FRAMEWORKS.

Eval Threads 1 16

L.
F. SS SOLAR S. SS SOLAR S.

EQ
5ms 51.3 15.2 3.37 49.3 14.1 3.49
20ms 186.3 52.4 3.55 182.5 49.7 3.67
40ms 378.6 103.5 3.65 370.2 98.48 3.75

LT
5ms 134.7 28.4 4.73 131.2 25.3 5.17
20ms 519.2 89.4 5.80 509.3 86.1 5.91
40ms 1013.4 174.3 5.81 1002.3 169.3 5.92

uDIV
5ms 12032 2534 4.74 11489 2289 5.01
20ms 43394 8448 5.13 42645 8344 5.11
40ms 90034 17423 5.16 89143 17432 5.11

SHA256
5ms 10034 4525 2.21 9869 3877 2.54
20ms 34940 13015 2.68 34256 12397 2.76
40ms 67239 25159 2.67 66354 23774 2.79

PSI
5ms 1287 917 1.40 1105 766 1.44
20ms 4694 2853 1.64 4487 2684 1.67
40ms 7132 4345 1.64 6955 4038 1.72

NN
5ms 5852 5133 1.14 3043 1977 1.53
20ms 10335 7437 1.38 5856 2710 2.16
40ms 14829 8748 1.69 11327 3841 2.94



(a) (b) (c) (d)
Fig. 5. Communication Rounds in uDIV, SHA256, PSI, NN under different latency and threads.

Speedup: We evaluated the basic operations and applica-
tions mentioned in Section IV-A and the results are shown in
Table III.

In the table, we can observe that all MPC programs benefit
from SOLAR under different network latency and different
number of threads. For all test cases with the same network
latency, the speedup tends to increase with more number of
threads. This is because NIX is faster with more threads and is
more capable to finish earlier than IX. For all test cases with
the same number of threads, the speedup tends to increase
with larger network latency, which can be explained by longer
network timeslot in IX and it will provide more chances for
NIX to finish its task.

The results of tests on malicious security are shown in
Table IV. Every secret sharing is associated with a MAC
value which also needs to be generated and transmitted when
reconstruction. It will double the amount of computation and
data transmission. At the end of protocol, the MAC value is
checked to detect potential malicious behavior, which leads to
an extra round of communication.

TABLE V
TIME COST (MS) AND SPEEDUP OVER FIXED CONVERSION, WHICH TRIES

TO CONVERT EVERY FOUR INTERACTIVE OPERATIONS. L. STANDS FOR
NETWORK LATENCY BETWEEN PARTIES. F. STANDS FOR DIFFERENT

FRAMEWORKS.

Eval Threads 1 16

L.
F. Fixed SOLAR S. Fixed SOLAR S.

EQ
5ms 14.5 10.4 1.4 13.1 11.1 1.18
20ms 54.3 41.2 1.31 51.3 40.8 1.25
40ms 118.4 81.1 1.45 115.4 80.6 1.43

LT
5ms 45.7 22.9 1.99 42.7 20.8 2.05
20ms 173.5 83.0 2.09 168.4 77.4 2.17
40ms 371.8 167.4 2.22 358.3 151.2 2.37

uDIV
5ms 3348 2091 1.60 3244 2089 1.55
20ms 15767 7714 2.04 14338 7604 1.89
40ms 32677 16134 2.02 31767 15503 2.05

SHA256
5ms 8356 3874 2.15 7134 3712 1.92
20ms 18447 12047 1.53 14558 11426 1.27
40ms 27485 22827 1.20 26343 22894 1.15

PSI
5ms 6174 765 8.07 5375 623 8.62
20ms 7163 2061 3.47 8157 1560 5.22
40ms 8174 3897 2.05 7369 3056 2.41

NN
5ms 6061 4284 1.41 5307 1390 3.82
20ms 7268 5809 1.25 6181 2178 2.83
40ms 8773 6885 1.27 7492 2521 2.97

From the table we may conclude that under malicious
secure setting, SOLAR can still achieve speedup over basic
secret sharing protocol. However, compared to the same circuit
under semi-honest security, the speedup drops. The reason

for lower speedup under malicious security is the increase of
computation overhead. During evaluation, both secret sharing
and the MAC value need to be calculated, which doubles the
amount of computation task. So the NIX has more workload
in the time slot when the IX is blocked.

We notice that SS benefit little from increasing the number
of threads in most applications except NN. That’s because the
computation cost in basic SS only takes a minor part in total
cost in EQ, LT, and SHA256. Since NN is massively parallel
and computation cost takes larger part as shown in Figure 6.

Moreover, to show the speedup over fixed conversion, we
set a fixed conversion size in SOLAR as baseline. The result
is shown in Table V. From the table, we see that fixed
conversion is usually slower than SOLAR. And for some
cases like PSI, it is even slower than basic SS, because
fixed conversion lacks consideration of network latency and
computation performance so it may miss some optimization
opportunity or bring too much computation overhead.

Communication: We recorded the communication rounds
of SOLAR under different number of threads and different
network latency. The result is shown in Figure IV-C. Note
that we only count the round in which the Comm. Executor
is not interrupted.

From the figure, we know that SOLAR reduces communica-
tion rounds, and as the network latency becomes larger, more
communication rounds are saved. Also, more communication
rounds are saved as the number of threads becomes larger. The
reason is that when network latency becomes larger, NIX will
have larger timeslot for conversion. If more threads are used
to accelerate computation, NIX will finish in less time. Both
conditions enable more communication-computation conver-
sion and reduce more rounds.

Profiling: To give a detailed analysis of the impact of
SOLAR, we give profiling on PSI. We show the time spent in
communication and computation, as shown in Figure 6.

From the profiling result, it is observed that:
First, based on SS profiling result from Figure 6(a), Fig-

ure 6(b), and Figure 6(c), we know that as the network latency
increases, the communication overhead also increases. In SS,
the increase is proportional to the network latency. Also, as the
number of threads increases, only computation time is reduced,
but communication time stays barley the same because SS has
a fixed number of communication rounds.

Second, SOLAR reduced the time spent in communication
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Fig. 6. Profiling of SS and SOLAR on PSI under different network latency and number of threads. L stands for latency.

effectively, compared with SS under the same network latency
and the same number of threads. This is because NIX performs
conversion and interrupt the communication of IX in the
middle. In many cases, NIX is able to finish within timeslot
because of the high-performance computation facilities.

Third, based on the bar in all figures where the number
of threads increases, we know SOLAR benefits from the
increase of computation power. Compared to basic SS that
cannot reduce communication cost even with more threads.
The reason is that during execution, NIX tries to convert
more operations until exceeds the timeslot. Moreover, when
computation performance improves, the time spent in NIX is
reduced, leading to less total cost.

V. DISCUSSION

Extra CPU usage in SOLAR: NIX performs its task during
the time slot when IX is blocked by network transmission.
NIX increases the CPU usage during this timeslot which might
cause concern of slowing down other tasks.

For this concern, we think extra CPU usage will not harm
the performance of the system. Because 1) The performance
of most of the current MPC task is bounded by the network
transmission instead of CPU performance. For example, Se-
cureML [23] transmit hundreds of GBs of data between parties
but only calculates simple matrix multiplications. 2) Even if
extra CPU usage harms the performance, it will only lead to
possible interruption of conversion and the performance will
not be worse than current SS system.

Extending to n Parties: SOLAR can be extended to an
arbitrary number of parties that is based on Beaver Circuit
Randomization [5]. In 1-out-of-n secret sharing where one
secret is randomly partitioned into n parts and each party
holds one part, the evaluation of interactive operation also
follows the same pattern as specified in Section II-A. And
the conversion of operation stays the same.

VI. RELATED WORK

The communication cost has already been identified as the
major cost in many SS-based MPC protocols. And many recent
works tried to reduce communication rounds or the amount of
data sent via network.

ABY [15] optimizes SS by mixed protocol. It profiles the
time cost of all kinds of gates in different SS protocol, which

enables empirical optimization on MPC applications. Specifi-
cally, ABY implements Arithmetic Sharing, Boolean Sharing,
Yao’s Garbled Circuit, and the conversion between these
protocols. To optimize the performance of MPC program, the
programmer divide the application code manually and choose
the optimal protocol in each part. Compared to ABY, SOLAR
does not require any prior knowledge for optimization.

Recent works such as ABY2.0 [25] and [24] reduce com-
munication rounds by implementing multi-fan-in gates so that
multiple operations could be evaluated in one communication
round. SOLAR distinguishes itself with automatic generation
of flattening and conversion schemes that is optimal in any
network conditions.

Some works [8], [9], [12], [23], [30], [34] focus on domain
specific optimization in PPML. SecureML [23] designed secret
sharing schemes for matrix multiplication to reduce transmit-
ted data size during communication. Cerebro [34] designed
domain-specific language and automatically optimized the
layout of the circuit in multiple parties. Compared to these
works on the specific application, our work focuses on all
applications constructed with secret sharing.

To the best of our knowledge, our work is the first secret
sharing based MPC framework that optimizes the commu-
nication automatically without modification of MPC circuits
or assumptions on application. Also, SOLAR automatically
adjust itself to the network condition between parties and
choose the optimal evaluation strategy in runtime.

VII. SUMMARY

In this paper, we present SOLAR, an MPC framework
with speculative dynamic communication-computation con-
version strategy that converts interactive operations to non-
interactive operations. The experiments’ results show that
SOLAR achieves 1.6-8.1⇥ speedup over basic SS and 1.2-
8.6⇥ over static conversion. Compared to previous works,
SOLAR successfully exploits more chances for optimization
with conversion in runtime without concern of increasing total
cost.
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